Multi-spectral fluorescence for in-vivo determination of proton energy and range in proton therapy
摘要:
The accuracy charged-particle beam trajectories used for radiation therapy in patients is improved by providing feedback on the beam location within a patient's body or a quality assurance phantom. Particle beams impinge on a patient or phantom in an arrangement designed to deliver radiation dose to a tumor, while avoiding as much normal tissue as can be achieved. By placing fiducial markers in the tumor or phantom that contain specific atomic constituents, a detection signal consisting of atomic fluorescence is produced by the particle beam. An algorithm can combine the detected fluorescence signal with the known location of the fiducial markers to determine the location of the particle beam in the patient or phantom.
信息查询
0/0