摘要:
A processing device is provided. The processing device comprises one or more interfaces configured to transmit information to a nonlinear device and processing circuitry configured to control the one or more interfaces and to. Further, the processing circuitry is configured to transmit an excitation signal to the nonlinear device and to receive response information from the nonlinear device. Further, the processing circuitry is configured to determine a linear response of the nonlinear device based on the response information and to determine a nonlinear response of the nonlinear device based on the determined linear response.
摘要:
Embodiments of apparatus and methods for applying a gain to an input signal are provided. An embodiment of a switched-capacitor gain stage circuit includes an input node, an output node, an operational amplifier, a correlated-double-sampling portion, a correlated-level-shifting portion, and a switching configuration. The operational amplifier has a first amplifier input, a second amplifier input, and an amplifier output. The correlated-double-sampling portion includes a plurality of sampling capacitors arranged in parallel and selectively coupled between the input node and a central node, and an offset storage capacitor including a first terminal coupled to the first amplifier input. The correlated-level-shifting portion includes a correlated-level-shifting capacitor including a first terminal coupled to the output node. The switching configuration has multiple switches that are controllable sequentially to place the gain stage circuit in a sampling state, an approximate output voltage storage state, a level shifting and gain state, and an output state.
摘要:
An analog multiplier 11 raises a base reference voltage “Vref0” to the nth power so that a reference voltage “Vref1” is produced. Analog multipliers 12 and 13 sequentially raise the reference voltage “Vref1” to the nth power so that reference voltages “Vref2” and “Vref3” are produced. Switch groups 38-41 control the reference voltages “Vref0” to “Vref3”, which are then sent to an analog multiplier 14 together with an input voltage “Vin”. A comparator 14 sequentially compares a multiplication result “Vx” of the multiplier 14 with a voltage “Vout” outputted from a sensor circuit 2, so that a digital output value “Dout” is produced. The analog multiplier 14 is set as appropriate.
摘要:
A signal-processing circuit adapted for signal compression and expansion performed in the transmitter and receiver of mobile communication equipment. The signal-processing circuit comprises a multiplication type D/A converter to which an analog signal is applied, a level detector circuit that detects the level of the analog signal, and an A/D converter. The D/A converter converts the analog input signal into an analog output signal having an amplitude corresponding to digital control data. The A/D converter digitizes the output signal from the level detector circuit and supplies it as said digital control data to the D/A converter. These circuits can be fabricated from CMOS circuits.
摘要翻译:一种适于在移动通信设备的发射机和接收机中执行的信号压缩和扩展的信号处理电路。 该信号处理电路包括一个乘法型D / A转换器,一个模拟信号被施加到其上,一个电平检测电路检测模拟信号的电平,一个A / D转换器。 D / A转换器将模拟输入信号转换成具有对应于数字控制数据的振幅的模拟输出信号。 A / D转换器对来自电平检测器电路的输出信号进行数字化,并将其作为数字控制数据提供给D / A转换器。 这些电路可以由CMOS电路制造。
摘要:
A data storage apparatus and method that allows the signal processing circuit to be in integrated form, so that the magnetic storage system may be reduced in size with increased performance is described. The apparatus includes a reproducing head that reproduces information stored on a recording medium, a preamplifier that amplifies the output of the reproducing head, and a low-pass filter. An A/D converter converts the output for the low-pass filter to a digital signal and has a reference voltage. A discriminator is coupled to an output of the A/D converter and discriminates the digital signal. A circuit, coupled to the discriminator, provides negative feedback control of the reference voltage of the A/D converter as a function of the digital signal before the discrimination by the discriminator and the digital signal that has been discriminated by the discriminator.
摘要:
A linearity corrector is provided that reduces distortion in a signal processing system, such as an ADC. The linearity corrector provides a first order signal path having distortion components connected to an adder, and a filter product circuit that is also connected to the adder. A method is provided for reducing distortion by calculating a filter product and adding the filter product to a first order signal having a relative delay such that the filter product reduces, or eliminates, the order of distortions corresponding to the order of the filter product.
摘要:
A diversity receiver circuit system (10) including a primary channel (20) and a diversity channel (22), where analog input signals are converted to differential signals in both channels (20, 22). The receiver circuit system (10) includes a multiplexer (14) and a variable gain amplifier (12) formed on a single RF integrated circuit chip (16), where the multiplexer (14) is positioned before the amplifier (12). The differential signals in the primary channel (20) and the diversity channel (22) are applied to an amplified path (72, 78) and a non-amplified path (76, 82) in the multiplexer (14). A control signal selects one of the amplified primary channel signal, the non-amplified primary channel signal, the amplified diversity channel signal or the non-amplified diversity channel signal. The selected signal is then applied to a first amplifier stage (88) and a second amplifier stage (96) in the variable gain amplifier (12), where both amplifier stages (88, 96) include an amplified path (90, 98) and a non-amplified path (92, 100).
摘要:
A D/A converter range calibration system in an A/D converter structure including a set of comparators with associated calibrating D/A converters includes means (RCC) for determining the offset error range for the entire set of comparators and means (R-DAC) for adjusting the dynamic range of each calibrating D/A converter to this offset error range.
摘要:
The analog-to-digital converting circuit apparatus of the invention is intended to realize both low voltage operation and high speed operation of an analog-to-digital converting circuit without impairing the precision characteristic. In plural boosting circuits, voltages higher than each supply voltage are generated. These plural boosting circuits are controlled as the control timing is sequentially shifted by the controller. The boosted voltages delivered from the plural boosting circuits are accumulated in the capacitor, and supplied into the analog-to-digital converter. In the analog-to-digital converter, at the timing other than the changeover timing of the converting action of the analog-to-digital converter, the plural boosting circuits are changed over sequentially, and the boosted voltages are converted from analog to digital values.
摘要:
An analog-to-digital converter stage includes: a comparator and logic circuit having first upper and lower unscaled voltage trip points that are different than upper and lower residue voltage trip points; and a switched capacitor circuit. The comparator and logic circuit is configured prior to an initial residue calculation cycle to compare a magnitude of an unscaled input voltage to the first upper and lower unscaled voltage trip points, to generate an initial output bit, and to generate a voltage scaling and gain control signal. The switched capacitor circuit is configured to sample the unscaled input voltage, to receive a reference voltage, and to receive the voltage scaling and gain control signal for selectively controlling a subset of switches of the switched capacitor circuit to scale the unscaled input voltage sample and reference voltage and generate an initial residue voltage during a single operation of the initial residue calculation cycle.