摘要:
Disclosed herein is a light emitting polymer composition which permits providing an organic electroluminescence device high in luminous efficiency and excellent in durability and forming a functional organic material layer with ease by the wet process.
摘要:
The invention provides a method of manufacturing an avalanche diode comprising the steps of applying a mask (6) over an active diode region (5) in a wafer (1), and damaging the region the surrounding the active diode region by breaking bonds in the semiconductor lattice to provide gettering sites in this surrounding region.
摘要:
A super-lattice thermoelectric device. The device includes p-legs and n-legs, each leg having a large number of alternating layers of two materials with differing electron band gaps. The n-legs in the device are comprised of alternating layers of silicon and silicon germanium. The p-legs includes alternating layers of B4C and B9C. In preferred embodiments the layers are about 100 angstroms thick. Applicants have fabricated and tested a first Si/SiGe (n-leg) and B4C/B9C (p-leg) quantum well thermocouple. Each leg was only 11 microns thick on a 5 micron Si substrate. Nevertheless, in actual tests the thermocouple operated with an amazing efficiency of 14 percent with a Th of 250 degrees C. Thermoelectric modules made according to the present invention are useful for both cooling applications as well as electric power generation. This preferred embodiment is a thermoelectric 10×10 egg crate type module about 6 cm×6 cm×0.76 cm designed to produce 70 Watts with a temperature difference of 300 degrees C with a module efficiency of about 30 percent.
摘要:
A semiconductor device is provided having an improved breakdown voltage on high power output, the semiconductor device comprising a n-type GaAs subcollector layer, a n-type GaAs intermediate collector layer formed between a collector layer and the subcollector layer, the n-type GaAs collector layer, a p-type GaAs base layer, a n-type InGaP second emitter layer, a n-type GaAs first emitter layer, and a n-type InGaAs emitter contact layer, and a concentration of impurities in the intermediate collector layer is higher than a concentration of impurities in the collector layer and is lower than a concentration of impurities in the subcollector layer.
摘要:
An InGaAlAs-based buried type laser is expected to improve properties of the device, but generates defects at a re-growth interface and is difficult to realize a long-term reliability necessary for optical communication, due to inclusion of Al in an active layer. A semiconductor optical device and an optical module including a package substrate and a semiconductor optical device mounted on the package substrate are provided, whereby there are realized the improvement of device properties and the long-term reliability through the use of an Al composition ratio-reduced tensile strained quantum well layer.
摘要:
A semiconductor component comprises a first semiconductor region (110, 310), a second semiconductor region (120, 320) above the first semiconductor region, a third semiconductor region (130, 330) above the second semiconductor region, a fourth semiconductor region (140, 340) above the third semiconductor region, a fifth semiconductor region (150, 350) above the second semiconductor region and at least partially contiguous with the fourth semiconductor region, a sixth semiconductor region (160, 360) above and electrically shorted to the fifth semiconductor region, and an electrically insulating layer (180, 380) above the fourth semiconductor region and the fifth semiconductor region. A junction (145, 345) between the fourth semiconductor region and the fifth semiconductor region forms a zener diode junction, which is located only underneath the electrically insulating layer. In one embodiment, a seventh semiconductor region (170) circumscribes the third, fourth, fifth, and sixth semiconductor regions.
摘要:
A method of fabricating a III-V heterostructure semiconductor device. The method includes the steps of forming at least one conductive post overlying a semiconductor region to form a structure, encapsulating the structure and the conductive post to form a planarized cured passivation layer, and exposing the conductive post through the planarized cured passivation layer to form the semiconductor device.
摘要:
A solid state p-n heterojunction comprising an electron conductor and a hole conductor; it further comprises a sensitising semiconductor, said sensitizing semiconductor being located at an interface between said electron conductor and said hole conductor. In particular, the sensitizing semiconductor is in form of quantum-dots. A solid state sensitized photovoltaic cell comprises such a heterojunction between two electrodes.
摘要:
A multi-layered structure of a semiconductor device includes a substrate, and a heteroepitaxial layer having a low dislocation defect density on the substrate. The heteroepitaxial layer consists of a main epitaxial layer and at least one intermediate epitaxial layer sandwished in the main epitaxial layer. At their interface, the heteroepitaxial layer, i.e., the bottom portion of the main epitaxial layer, and the substrate have different lattice constants. Also, the intermediate epitaxial layer has a different lattice constant from that of the portions of the main epitaxial layer contiguous to the intermediate epitaxial layer. The intermediate epitaxial layer also has a thickness smaller than the net thickness of the main epitaxial layer such that the intermediate epitaxial layer absorbs the strain in the heteroepitaxial layer. Thus, it is possible to obtain a multi-layered structure comprising an epitaxial layer that is relatively thin and has a low dislocation defect density.
摘要:
A III group nitride system compound semiconductor light emitting element has a quantum well structure that includes a well layer of AlX1GaY1In1-X1-Y1N, where 0