Abstract:
A semiconductor test chip including a plurality of test functions. The test functions of the semiconductor test chip include bond pad pitch and size effects on chip design, wire bond placement accuracy regarding placement of the wire bond on the bond pad, evaluation of bond pad damage (cratering) effect on the area of the chip below the bond pad during bonding of the wire on the bond pad, street width effects regarding the use of thinner saw cuts in cutting the individual chips from the wafer, thermal impedance effects for thermal testing capabilities, ion mobility evaluation capabilities and chip on board in flip chip application test capabilities.
Abstract:
The interconnect pattern of the tape carrier in a COF is gold plated other than the part covered by solder resists. The inner leads of the tape carrier and the corresponding gold bumps of electrodes of the semiconductor chip are thermally compressed so that the inner leads penetrate into the gold bumps, thus creating gold-gold compression bonding.
Abstract:
A semiconductor component includes a semiconductor chip (341, 502, 601, 701, 1101, 1410, 1501) having first and second surfaces opposite each other, a semiconductor device (301) in the semiconductor chip (341, 502, 601, 701, 1101, 1410, 1501), and a flexible substrate (120, 401, 510, 610, 710, 1000, 1050, 1300, 1401, 1510, 1520) packaging the semiconductor chip (341, 502, 601, 701, 1101, 1410, 1501).
Abstract:
An electronic component includes an insulating coating that is electrically conductive when heated disposed on a portion of a surface of a semiconductor chip; electrodes disposed on the surface of the semiconductor chip elsewhere; and inner leads extending from a lead frame and anodically bonded to the insulating coating so that the inner leads are electrically coupled to the electrodes.
Abstract:
A window-type multi-chip semiconductor package is provided. A first chip and a second chip are mounted on a surface of a substrate formed with an opening, and a third chip is stacked on the first and second chips, wherein a plurality of bonding wires formed through the opening are used to electrically interconnect the chips and electrically connect the chips to the substrate. The chips are encapsulated by a first encapsulant formed on the surface of the substrate, and a second encapsulant is formed on an opposing surface of the substrate for encapsulating the bonding wires. With the chips being mounted on the same surface of the substrate, conductive elements such as bond pads formed on the chips are arranged toward the same direction and facilitate shortening of the bonding wires, thereby enhancing electrical transmission and performances for the semiconductor package.
Abstract:
A semiconductor module includes a semiconductor chip, a lead frame having lead fingers, and a down set member within an encapsulant for reduce warpage and providing a more planar package by balancing thermal stress between the lead fingers and the encapsulant. The down set member can be a bent portion of the lead frame. It can also be a separate body, such as a dummy semiconductor chip.
Abstract:
Ball grid array packages that can be stacked to form highly dense components and the method for stacking ball grid arrays. The ball grid array packages comprise flexible or rigid substrates. The ball grid array packages additionally comprise an arrangement for the substantial matching of impedance for the circuits connected to the semiconductor devices.
Abstract:
A method of creating multi-gate transistors with integrated circuit polygon compactors is disclosed. Specifically, in order to provide a more efficient layout when the size of a transistor is increased during design migration, a small multi-gate transistor is formed by inserting at least one parallel transistor over the diffusion layer of the target transistor, between a gate and contact. The compactor then enforces the new design rules, and adjusts the relative sizes of the parallel transistors as required. The resulting multi-gate transistor structure is much more compact than a single large transistor, providing a more efficient design layout.
Abstract:
A palladium plated lead frame (34) for integrated circuit devices has a nickel strike (36) and a palladium/nickel alloy layer (38) separating the copper base metal (28) from the nickel intermediate layer (40) in order to prevent a galvanic potential from drawing copper ions from the base metal layer (28) to the top layer (42). The nickel strike (36) and palladium/nickel alloy layer (38) also reduce the number of paths through which a copper ion could migrate to the top surface resulting in corrosion.
Abstract:
A carrier substrate comprising a non-conductive substrate, one or more conductive regions on, under or within the non-conductive substrate, and a plurality of pads, selectively coupled with the conductive regions, to receive and couple with conductive elements of a component, wherein at least one pad is configured to receive and couple with two or more conductive elements of the component.