摘要:
This specification describes techniques for manufacturing an electronic system module. The module includes flexible multi-layer interconnection circuits with trace widths as narrow as 5 microns or less. A glass panel manufacturing facility, similar to those employed for making liquid crystal display, LCD, panels is preferably used to fabricate the interconnection circuits. A multi-layer interconnection circuit is fabricated on the glass panel using a release layer. A special assembly layer is formed over the interconnection circuit comprising a thick dielectric layer with openings formed at input/output (I/O) pad locations. Solder paste is deposited in the openings using a squeegee to form wells filled with solder. IC chips are provided with gold stud bumps at I/O pad locations, and these bumps are inserted in the wells to form flip chip connections. The IC chips are tested and reworked. The same bump/well connections can be used to attach fine-pitch cables. Module packaging layers are provided for hermetic sealing and for electromagnetic shielding. A blade server or supercomputer embodiment is also described.
摘要:
A substantially planar substrate having opposed major surfaces is provided. The substrate includes a through hole that extends between the major surfaces. The through hole is filled with a conductive interconnecting element. A conductive mounting pad and a conductive connecting pad are formed on different ones of the major surfaces in electrical contact with the conductive interconnecting element. The packaging device formed by the method has a volume that is only a few times that of the semiconductor die and can be fabricated from materials that can withstand high-temperature die attach processes. The packaging device can be configured as the only packaging device used in the semiconductor device or as a submount for a semiconductor die that requires a high-temperature die attach process.
摘要:
A silica-based coating film having a low dielectric constant not exceeding 2.5 can be formed on the surface of a substrate to serve as a planarizing layer or an interlayer insulating layer by coating the surface with a unique coating solution containing a hydrolysis-condensation product of a polyalkoxy silane compound such as tetraethoxy silane and monomethyl trimethoxy silane, which is formed by the hydrolysis of a polyalkoxy silane in the presence of a basic catalyst such as ammonia in an alcohol solvent in a relatively low concentration followed by replacement of the alcohol solvent with an aprotic polar solvent such as N-methyl pyrrolidone, followed by drying and baking at 350 to 800° C.
摘要:
Object of the InventionTo obtain thin film transistors with controlled characteristics on a substrate.MeansA semiconductor film formed on a substrate is crystallized by continuously oscillating type laser. The scanning direction of the continuously oscillating type laser and the crystallization direction are coincident with each other. Adjustment of the crystallization direction and the charge transferring direction of the thin film transistors makes control of the characteristics of the thin film transistors possible. With respect to the laser treatment device for crystallizing the semiconductor film, the beam shape of laser oscillated from the continuously oscillating type laser device is made to be elliptical by a cylindrical lens and said cylindrical lens is made rotatable and said laser beam is scanned on said substrate by a galvanomirror and said laser beam can be focused upon said substrate by f-θ lens.
摘要:
A microdevice (20) having a hermetically sealed cavity (22) to house a microstructure (26). The microdevice (20) comprises a substrate (30), a cap (40), an isolation layer (70), at least one conductive island (60), and an isolation trench (50). The substrate (30) has a top side (32) with a plurality of conductive traces (36) formed thereon. The conductive traces (36) provide electrical connection to the microstructure (26). The cap (40) has a base portion (42) and a sidewall (44). The sidewall (44) extends outwardly from the base portion (42) to define a recess (46) in the cap (40). The isolation layer (70) is attached between the sidewall (44) of the cap (40) and the plurality of conductive traces (36). The conductive island (60) is attached to at least one of the plurality of conductive traces (36). The isolation trench (50) is positioned between the cap (40) and the conductive island (60) and may be unfilled or at least partially filled with an electrically isolating material. There is also a method of making the same microdevice. sidewall (44) extends outwardly from the base portion (42) to define a recess (46) in the cap (40). The isolation layer (70) is attached between the sidewall (44) of the cap (40) and the plurality of conductive traces (36). The conductive island (60) is attached to at least one of the plurality of conductive traces (36). The isolation trench (50) is positioned between the cap (40) and the conductive island (60) and may be unfilled or at least partially filled with an electrically isolating material. There is also a method of making the same microdevice.
摘要:
An embodiment of the present invention is a technique to heat spread at wafer level. A silicon wafer is thinned. A chemical vapor deposition diamond (CVDD) wafer processed. The CVDD wafer is bonded to the thinned silicon wafer to form a bonded wafer. Metallization is plated on back side of the CVDD wafer. The CVDD wafer is reflowed to flatten the back side.
摘要:
A method for fabricating a liquid crystal display (LCD) device to improve picture quality by preventing defective rubbing, is disclosed. The method which includes preparing first and second substrates, forming a thin film transistor on the first substrate, forming a first orientation layer on the first substrate including the thin film transistor, performing rubbing and orientation direction alignment processes on the first orientation layer to provide a uniform alignment direction, and forming a liquid crystal layer between the first and second substrates.
摘要:
An IrOx film is formed as a first conductive oxide film on a PLZT film by a reactive sputtering method. Thereafter, thermal treatment by, for example, RTA is performed in an atmosphere containing oxygen having partial pressure of less than 5% of atmospheric pressure. As a result, crystallization of the PLZT film is promoted, and annealing treatment is performed for the IrOx film. Thereafter, furnace annealing at 600° C. or higher, for example, 650° C. is performed for 60 minutes in, for example, an O2 atmosphere as recovering annealing to recover oxygen deficiency in the PLZT film. Subsequently, an IrO2 film is formed as a second conductive oxide film on the IrOx film by a sputtering method.
摘要:
A surface acoustic wave device includes a piezoelectric substrate, a first interdigital transducer and a second interdigital transducer formed on the substrate so that the first and second interdigital transducers are opposed to each other. The substrate includes a doping region that is doped with a substance in at least one form selected from the group consisting of atoms, molecules and clusters in a surface between the first and second interdigital transducers.