Abstract:
An internal combustion engine 31 for a motorcycle includes a supercharger 63 arranged above a crankcase 81 positioned below a front cylinder head 92 of a front bank 31A and a rear cylinder head 97 of a rear bank 31B. In the internal combustion engine 31 for the motorcycle, the crankcase 81 is covered with a case cover 116 from the outside in a vehicle width direction, and the supercharger 63 is supported by a supercharger supporting portion 116a provided above the case cover 116.
Abstract:
In cases where an EGR device is provided in which an EGR gas is recirculated to an upstream side of a compressor, the generation of condensed water is suppressed in an intake passage at the downstream side of the compressor. In the case where the temperature of a wall surface of the intake passage estimated or detected by a temperature detector is equal to or less than a predetermined temperature, a rotational speed of a turbine is made higher than in the case where the estimated or detected temperature of the wall surface of the intake passage is higher than the predetermined temperature, and torque of an internal combustion engine is adjusted such that an amount of change in an output of the internal combustion engine at the time of the rotational speed of the turbine being thus made higher falls within a predetermined range.
Abstract:
A variable speed hybrid electric supercharger assembly is controlled to regulate an adaptive state of charge of an energy storage device and/or to boost an engine based on a performance mode selected by a driver. In one example, a reference state of charge is determined based upon driving characteristics of a vehicle and compared to an actual state of charge of the energy storage device. If the difference indicates a deficit, an operation mode is selected to regenerate the energy storage device. In another example, a planetary gearing arrangement between an engine and an electric motor is configured to increase or decrease power transferred to the supercharger by the engine based upon the performance mode selected by the driver.
Abstract:
A supercharged internal combustion engine has a supercharger operable to selectively supply a mass of air from below through above atmospheric air pressure according to the operating requirements of the engine. The supercharger has a shuttle combined with a throttle valve that controls the mass of air directed to an air mass bypass opening and supplied to the internal combustion engine. The shuttle has rollers that ride on rails that allow the shuttle to move to open and close the air mass bypass opening in communication with a casing that directs a mass of atmospheric air and a bypass mass of air interfused with the mass of atmospheric air to an air mass inlet of the supercharger.
Abstract:
A method of and apparatus for operating a supercharger for an automotive engine is disclosed. The supercharger has: an input shaft for coupling to an engine crankshaft, and coupled to the rotor of a first electrical machine and a first component of an epicyclic gear train; and an output shaft connected to a compressor and a second component of the epicyclic gear train; wherein the third component of the epicyclic gear train is connected to the rotor of a second electrical machine. The first electrical machine is selectively operable to supply electrical energy to the second electrical machine. The method includes the steps of: (a) calculating a required speed of the second electrical machine that would give rise to a required pressure at an outlet of the compressor; and (b) setting the speed of the second electrical machine to the calculated required speed.
Abstract:
A compressor system and a method for operating a compressor system is provided. The system includes an air compressor and a planetary gear train having an input shaft connected to a planetary carrier of the gear train and an output shaft connected the compressor and a sun gear of the gear train. A first switchable fixing device fixes one of means of which the planet carrier, the sun gear and a ring gear of the gear train with respect to an outer support, and a second switchable fixing device fixes relative to one another the two of components not fixed by the first switchable fixing device of the planetary gear train.
Abstract:
The invention refers to a supercharging system for an internal combustion engine incorporating in combination, a turbine, a compressor and an electrical driven system that is connected by any power transmission system to the crankshaft or any other vehicle drive shaft of an internal combustion engine, where the turbine inlet is subjected to exhaust gases, causing the turbine wheel to rotate and thereby via the drive shaft causing mechanical rotating power.
Abstract:
A supercharged internal combustion engine has a supercharger operable to selectively supply a mass of air from below through above atmospheric air pressure according to the operating requirements of the engine. The supercharger has a shuttle combined with a throttle valve that controls the mass of air directed to an air mass bypass opening and supplied to the internal combustion engine. The shuttle has rollers that ride on rails that allow the shuttle to move to open and close the air mass bypass opening in communication with a casing that directs a mass of atmospheric air and a bypass mass of air interfused with the mass of atmospheric air to an air mass inlet of the supercharger.
Abstract:
The present disclosure describes a supercharging device for an internal combustion engine of a motor vehicle comprising: a planetary mechanism, a first electric machine, a second electric machine, a compressor impeller, and an internal combustion engine attachment for fastening to a drive output shaft of the internal combustion engine. The first electric machine, the second electric machine and the compressor impeller are connected to one another via the planetary mechanism. Along a longitudinal axis of the supercharging device, the compressor impeller is arranged on a first side of one of the electric machines, and the other of the electric machines is arranged on the second side situated opposite said first side.