Abstract:
Apparatus and methods for flattening thin substrate surfaces by stretching thin flexible substrates to which ICs can be bonded. Various embodiments beneficially maintain the substrate flatness during the assembly process through singulation. According to one embodiment, the use of a window frame type component carrier allows processing of thin laminates and flex films through various manufacturing processes. The flexible substrate is bonded to a rigid carrier. The carrier is placed into a specialized fixture comprising a bottom plate and a top plate. The bottom plate with raised regions is created that allows the windowed region of the flex film to be pressed flat. After aligning the top plate, the bottom plate, and the middle structure, the plates are pressed together causing the raised regions to push the flex film substrate upward and around the carrier. By pressing the thin substrate upward, the substrate is stretched like a drum head over the raised sections of the bottom plate, thereby flattening the substrate. The die assembly site is held flat overtop of the raised portion of the carrier to provide a stable vase for placement of the die.
Abstract:
The present invention provides a method for encapsulating a ceramic moulding, preferably a silicon ceramic moulding such that the encapsulated mouldings can be subjected to hot isostatic pressing without causing the pressure-transfer medium to penetrate into the pores of the moulding. Encapsulation is achieved by first evacuating the moulding, then filling it with nitrogen gas and thereafter immersing it in a silicon (Si) melt. In a preferred aspect the moulding is filled with nitrogen gas under positive pressure. Once the silicon melt has been deposited, pressure can be allowed to act on it externally.
Abstract:
The adhesion of conductive layers to ceramic substrates in the application of such layers by low-energy techniques is improved by interposing between the high-conductivity metal layer and the substrate a layer of a refractory metal which is preferably also applied by low-energy vaporization. The metal layers can be provided in succession by reversing the polarity of electrodes composed of the metals of these layers which strike an arc vaporizing the metal to be deposited.
Abstract:
A process for producing electronic-grade silicon bodies is disclosed wherein continuously-pulled slim rods which can be formed in situ from the reaction of a seed crystal and a molten silicon source, are pulled into and through a chemical vapor deposition chamber, having in combination different gas curtains along the chamber inner wall, the slim rod surfaces being preheated before entry into the deposition chamber where the rods are simultaneously exposed to heating and thermally decomposable gaseous silicon compounds in order to provide suitable surface reaction conditions on the slim rods for the decomposition of the gaseous silicon compounds resulting in deposition growth upon the surfaces of the rods.
Abstract:
A method and an apparatus are provided for performing growth of compound thin films by alternately repeating separate surface reactions of the substances comprising the compound. A carrier gas affects a diffusion barrier between the surface reaction steps to be separated from each other. The gas phase diffusion barrier is also applied to separate the source regions of different reacting vapors both from each other and from the surface reaction zone.
Abstract:
In the method of forming diffusion coatings for improved corrosion, erosion or wear properties in high performance alloy structures, the coatings being characterized by the intimate presence of an interdispersed phase material in desired amount to enhance one or more of these properties, which includes interdiffusing under non-oxidizing conditions a portion of the structure surface and an alloying element disposed therewith, such as aluminum, in a diffusion pack of predetermined composition desirable for the interdiffusion, the improvement comprising maintaining the desired amount of interdispersed phase material relatively richly concentrated within a selected pack zone corresponding to the locus of interdiffusion for intimate diffusion coating interdispersal from the pack zone in interdiffusion responsive relation and freely of varying the predetermined composition of the pack.
Abstract:
This invention relates to a new manner of carrying out chemical reactions by injection of selected forms of energy into the reaction zone by novel means. By applying this principal, many new processes result with application in a large number of different industries. The new process is generally capable of operation at room temperatures, which has advantages in the creation of certain sensitive products including uniformly doped semi-conductors, new catalysts, pure gases, high purity materials of any kind, controlled coatings, new polymers, combustion enhancement, difficult separation, petroleum refinery operations, and carrying out any reaction in which the injection of specific energy types is helpful.
Abstract:
An apparatus and method are provided for depositing submicron patterns on a substrate. The apparatus includes an evaporative source located opposite the substrate so that molecules from the source can be deposited directly on the substrate. A mask is located between the evaporative source and the substrate, the mask having openings which correspond to the desired pattern to be deposited on the substrate. A plate is located between the mask and the substrate, the plate having an aperture for allowing evaporated molecules to be deposited on the substrate according to the pattern of the mask.
Abstract:
To facilitate the ion bombardment of a substrate surface as a pretreatment step prior to depositing thin films in a high vacuum evaporation system, a thermionic electron source is placed in the cathode electrode used to generate the plasma that provides the ion bombardment. The thermionic electron source does not interfere with the basic function of the plasma system. Its main effect is to enhance the plasma efficiency by injecting electrons into the surrounding space, reducing charging effects on surfaces, neutralizing the plasma cloud, causing less plasma dispersion, and perhaps, most importantly, allowing the plasma to be sustained at lower pressures and higher voltages resulting in greater ion energies and mobility for improved surface bombardment.Other electron sources, such as, a cathode ray accelerator as a beta emitter, may be positioned to simultaneously or independently, to inject electrons into the plasma and to direct electrons toward the substrate surface to neutralize surface charge.
Abstract:
A method of producing a high vacuum in a container which has limiting wallshich define a reaction chamber which is adapted to be evacuated for vacuum processing purposes, and in which gases are sorbed during vacuum operation and the gases are removed subsequently by increasing the temperature of the walls and evacuating the chamber at the same time includes heating the reaction chamber, sensing the underpressure in the reaction chamber and controlling the heating of the chamber in accordance with the sensed pressure in a manner such that the underpressure remains within a preselected upper and lower limit value until a predetermined temperature of the walls is attained.