Abstract:
High temperature stable thermal barrier coatings useful for substrates that form component parts of engines such as a component from a gas turbine engine exposed to high temperatures are provided. The thermal barrier coatings include a multiphase composite and/or a multilayer coating comprised of two or more phases with at least one phase providing a low thermal conductivity and at least one phase providing mechanical and erosion durability. Such low thermal conductivity phase can include a rare earth zirconate and such mechanical durability phase can include a rare earth a rare earth aluminate. The different phases are thermochemically compatible even at high temperatures above about 1200° C.
Abstract:
A process includes applying a slurry to a surface of a metallic article to produce a slurry film on the surface. The slurry is composed of a liquid carrier, chromium and aluminum, and an agent that is reactive with the chromium and aluminum to form intermediary compounds. The article and slurry film are then thermally treated at an activation temperature at which the agent reacts with the chromium and aluminum to form the intermediary compounds. The intermediary compounds deposit the chromium and aluminum on the surface. The thermal treating also diffuses the chromium and aluminum into a sub-surface region of the article such that the sub-surface region becomes enriched with chromium and aluminum.
Abstract:
A method of applying a protective coating to an article comprises the steps of a) depositing aluminum in a surface region of an article, and b) depositing chromium is the surface region of the article subsequent to step a), whereby at least a portion of the chromium replaces at least a portion of the aluminum. Another method and an article are also disclosed.
Abstract:
A steel member with surface modified during manufacture has good anti-corrosion properties. The steel member includes a steel substrate, a metallic diffusion layer formed on the steel substrate, and an alloy deposition layer formed on the metallic diffusion layer. The steel substrate is made of low-carbon steel or low-carbon alloy steel. After cleaning and heating processes are applied, the metallic diffusion layer includes pearlite and ferrite crystals and hardness of the surface is also enhanced. The alloy deposition layer includes zinc ferrum alloy.
Abstract:
A part include a refractory alloy including a niobium matrix having metal silicide inclusions present therein, the surface of the part being coated by a protective coating, the protective coating including a phase having the following stoichiometry: (NbxTi1-x)3MβCrγSiδXε where M designates Fe, Co, or Ni, X designates one or more other elements that might be present, x lies in the range 0 to 1, x lies in the range 5 to 8.5, and the sum β+γ lies in the range 3 to 7; or Nb4M′ƒSiθX′ε′ where M′ designates Fe, Co, or Ni, X′ designates one or more other elements that might be present, η lies in the range 3.2 to 4.8, and θ lies in the range 6 to 8.
Abstract:
A method of coating a superalloy substrate, includes (a) aluminising the surface of the substrate to form an inner coating layer; (b) applying a slurry with a solid content including Cr, Al, Ni and Co onto the inner coating layer, where the Cr-content of the solid content is between 15% and 30% by weight thereof, and diffusion heat treating the slurry applied to the inner coating layer at a temperature above 800° C. for 1 to 8 hours to form an intermediate coating layer; and (c) applying a Cr-free slurry with a solid content including Al and Ni onto the intermediate coating layer, where the Al-content of the solid content is between 15% and 30% by weight of the solid content, and diffusion heat treating the slurry applied onto the intermediate surface layer at a temperature above 800° C. for 1 to 8 hours to form an outer coating layer.
Abstract:
There is provided a surface alloyed component which comprises a base alloy with a diffusion barrier layer enriched in silicon and chromium being provided adjacent thereto. An enrichment pool layer is created adjacent said diffusion barrier and contains silicon and chromium and optionally titanium or aluminum. A reactive gas treatment may be used to generate a replenishable protective scale on the outermost surface of said component.
Abstract:
A method of diffusion coating a surface of an alloy product containing at least 5 wt. % iron with a chromium-silicon coating uses a dual activator containing a fluoride salt and a chloride salt, at least one of those salts particularly being ammonium chloride or another ammonium halide salt. The pack mix contain at least 20% chromium and a chromium to silicon ratio of at least 10 to 1. The workpiece is heated to at least 2050.degree. F. to obtain a coating of at least 10 mils which contains at least 30% chromium. Upon heating the ammonium salt will form a reducing environment containing molecular hydrogen. The presence of molecular hydrogen speeds up the chemical reactions by an additional reduction reaction to create the surface coating which enables the coating reactions to occur shorter hold times.
Abstract:
Aluminium or silicon is diffused into iron (including silicon-iron) by applying to the iron an aqueous paste containing powdered aluminium/silicon, sodium silicate, and optionally magnesium oxide and colloidal silica, and firing it.
Abstract:
A process for providing coatings on metal articles whereby the articles will be resistant to corrosion at elevated temperatures. The process involves the application of an overlay on an article surface, the overlay comprising a ductile metal of a composition normally resistant to corrosion at elevated temperatures. An outer layer of aluminide or metal which is resistant to corrosion at elevated temperatures but which is subject to embrittlement at such temperatures is applied to complete the coating. Porosity in the coating is then eliminated and a high integrity corrosion resistant coating not subject to cracking is obtained by heating the article in a gaseous atmosphere to elevated temperature and simultaneously applying isostatic pressure to the article.