Abstract:
The invention relates to use of a polyester comprising monomer repeating units from (A) a hydrogenated bisphenol, (B) a diol, (C) a dicarboxylic acid or its anhydride as a tackifier of an adhesive composition, wherein (C) comprises (C1) an aliphatic dicarboxylic acid or its anhydride.
Abstract:
In the present disclosure, it is possible to identify and select recycled bis-2-hydroxyethyl terephthalate of a certain quality or higher, and thus the quality of a polyester resin prepared using the recycled bis-2-hydroxyethyl terephthalate can be improved.
Abstract:
Embodiments provided herein, relate to, in part, oxidative degradation of Cashew Nut Shell Liquid (CNSL) derivatives methods for making the same, and uses thereof, including embodiments relating to coatings, varnishes, adhesives compositions, polyurethane systems, thermoplastic and thermoset polymers and the like.
Abstract:
Oxygen-absorbing resin composition, not responsive to a metal detector, producing no odor after absorption of oxygen and has excellent oxygen-absorbing performance in a wide range of humidity conditions from low to high humidity. An oxygen-absorbing molded article, and a multilayer body, container, injection-molded article and medical containers also provided. The oxygen absorbing resin composition contains a polyester, comprising at least one constituent unit having a tetralin ring component compound, a transition metal catalyst, and a catalyst for producing the polyester. The oxygen-absorbing molded article of the present invention can be formed by molding the oxygen-absorbing resin composition into a film or a sheet. The multilayer body, container, injection-molded article, medical container, etc. of the present invention are obtained by using the oxygen-absorbing resin composition.
Abstract:
A process for producing a heat delivery device containing or consisting of a polymer composition comprising a fragrance or part thereof comprising the steps of: a) producing a first polymer composition, by feeding a thermoplastic polyester, optionally a first thermoplastic copolyester elastomer and optionally further components of the composition to an extruder, melting and mixing the components, b) cooling down the first polymer composition and c) feeding the first polymer composition and a master batch comprising a second thermoplastic copolyester elastomer and the fragrance to an injection molding machine, melting and mixing the first polymer composition and the master batch in the injection molding machine to obtain the second polymer composition and injection molding of the so obtained molten second polymer composition into the mold of the high-heat delivery device or the part thereof.
Abstract:
The polymer includes a first structural unit represented by formula (1), a second structural unit represented by formula (2), and a third structural unit represented by formula (3). R1, R2, R10 and R11 each independently represent a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a nitro group or a cyano group; R3A, R3B R4A and R4B each independently represent a methylene group or an alkylene group having 2 to 4 carbon atoms; ZA to ZD each independently represent —O— or —S—; and L represents a divalent group represented by formula (3-1) or (3-2), wherein Ra represents a divalent alicyclic hydrocarbon group having 5 to 30 ring atoms or a divalent fluorinated alicyclic hydrocarbon group having 5 to 30 ring atoms.
Abstract:
A method to generate renewable high performance composites and thermoplastics. These materials can be generated from a renewable phenol (syringaldehyde) that can be derived from lignocellulosic biomass. The use of syringaldehyde as a precursor to composites has the potential to reduce the cost and environmental impact of structural materials, while meeting or exceeding the performance of current petroleum derived resins.
Abstract:
Provided is a thermoplastic resin which (A) remarkably improves thermal conductivity of a resin composition when a thermally conductive filler is added and (B) can be injection-molded even by use of a general injection-molding die.The thermoplastic resin is a resin wherein: a main chain which mainly has a specific repeating unit; and 60 mol % or more ends of molecular chains are carboxyl groups.
Abstract:
There is provided an aromatic polyester suitable for optical applications, which has not only high heat resistance and transparency, but also enhanced fluidity at a relatively low molding temperature of less than 300° C. despite its high molecular weight to be substantially colorless after the molding process. The aromatic polyester of the present invention comprises polyhydric phenol residues and residues of aromatic polycarboxylic acid, acid halide or acid anhydride thereof; wherein the polyhydric phenol residues comprise polyhydric phenol residues represented by Formula (I): —O—Ar—W1x—Ar—O— and/or Formula (II): —O—Ar—O—, and bulky polyhydric phenol residues represented by Formula (III): —O—Ar—W2—Ar—O—; wherein the molar ratio of the polyhydric phenol residues represented by Formula (I) and/or Formula (II) to the polyhydric phenol residues represented by Formula (III) is in the range of 100:0 to 30:70 (exclusive of 100:0).
Abstract:
A coating composition comprising components A, B and optionally C, wherein component A comprises at least one hydroxy-terminated polyarylate. Component B is an organic species which can react with the hydroxy terminal groups of component A, and component C is a catalyst or mixture of catalysts. The hydroxy-terminated polyarylates are prepared by a solution polymerization method.