Abstract:
In a method for producing at least a single-walled tubular thermoplastic body in a machine, a nozzle head extrudes at least one tubular preform. The preform is expanded to a predefined dimension in a transverse direction and to a predefined shape in an expansion process using an expanding mandrel, the preform remaining open at the top and bottom. When the at least one preform has cooled off, the expanding mandrel is changed into a non-expanded state and the at least single-walled tubular body is removed from the machine.
Abstract:
A parison tube former utilizes a radial compression heater to heat a very specific portion of a preform tube for stretching. The heater has a plurality of compression dies that form a central cavity for receiving the preform tube. The working surfaces of the compression dies close down onto the outer surface of the preform tube to heat the tube via conduction, which more accurately and precisely heats the preform tube. A first stretched portion of the preform tube is produced by stretching the preform tube after heating. A second portion of the preform tube is then located within the central cavity and is also heated by the radial compression heater and stretched to produce a second stretched portion of the preform tube and an unexpanded portion of the preform tube, or balloon portion of the parison tube.
Abstract:
In a method for producing at least a single-walled tubular thermoplastic body in a machine, a nozzle head extrudes at least one tubular preform. The preform is expanded to a predefined dimension in a transverse direction and to a predefined shape in an expansion process using an expanding mandrel, the preform remaining open at the top and bottom. When the at least one preform has cooled off, the expanding mandrel is changed into a non-expanded state and the at least single-walled tubular body is removed from the machine.
Abstract:
Provided is a mesh-patterned resin molded product (10) used for encasing and protecting a hollow piping member provided in a vehicle or a small ship. The mesh-patterned resin molded product (10), in a case of an ordinary state where no load is applied to the mesh-patterned resin molded product (10), includes a plurality of first resin wired portions (11) that extend parallel to each other, and a plurality of second resin wired portions (12) that extend parallel to each other in a direction respectively intersecting the first resin wired portions (11). Each of the first resin wired portions (11) and each of the second resin wired portions (12) are joined to each other on a joint portion (13) positioned at a mutual intersection portion. At the intersection portion, a direction passing through both axial centers of the first resin wired portion (11) and the second resin wired portion (12) and being orthogonal to both the axial centers is set as an orthographic projection direction P. When the first resin wired portion (11) and the second resin wired portion (12) are viewed in the orthographic projection direction P, a second surface area that is a surface area of the joint portion (13) between the first resin wired portion (11) and the second resin wired portion (12) is smaller than a first surface area that is an overlapping surface area between the first resin wired portion (11) and the second resin wired portion (12). The plurality of first resin wired portions (11) and the plurality of second resin wired portions (12) are formed of a material including a thermoplastic resin.
Abstract:
A tool operable to expand an end of a pipe is disclosed. The tool has a longitudinal axis and a vertical axis. The tool includes a working end disposed at a distal end along the longitudinal axis. This working end includes a plurality of jaws movable between a closed position and an expanded position and rotatable about the longitudinal axis of the tool. Further, the tool includes a main body connected to the working end. This main body includes a handle disposed at a proximal end along the vertical axis of the tool, wherein the handle is configured to be gripped in an orientation that is substantially parallel to the longitudinal axis of the tool. Further, the tool includes a trigger disposed on the handle, and the trigger is configured to be activated by trigger movement along the vertical axis of the tool.
Abstract:
A bioabsorbable scaffold composed of a multilayer structure of alternating layers of different polymers is disclosed. The multilayer structure can have 20 to 1000 layers and the individual thickness of the layers can be 0.2 to 5 microns. A method of making the scaffold including a layer multiplying extrusion process is disclosed.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold, after being deployed by the balloon, provides a crush recovery of about 90% after the diameter of the scaffold has been pinched or crushed by 50%. The scaffold also has a reduced crimped profile and a modification of the scaffold's ring structure at the crowns that contributes to the reduced crimped profile.
Abstract:
A shunt rivet for implantation in the aorta and inferior vena cava to treat chronic obstructive pulmonary disease, and a method of treating chronic obstructive pulmonary disease.
Abstract:
A method of making an ePTFE tubular structure includes the steps of (a) forming a tube of polytetrafluoroethylene; (b) longitudinally stretching the polytetrafluoroethylene tube to form an expanded polytetrafluoroethylene tube, where the expanded polytetrafluoroethylene tube includes fibrils oriented in a longitudinal direction of the tube and nodes oriented in a circumferential direction of the tube; and (c) placing the expanded polytetrafluoroethylene tube circumferentially exterior to a longitudinal foreshortening and radially expanding mechanism, where radial pressure from the foreshortening mechanism radially expands the ePTFE tubular structure and reorients the fibrils non-longitudinally.
Abstract:
In order to attach a fuel system component such as a pipe nipple to a fuel tank having a polyethylene outer layer, the fuel system component is made from a first material which may have desirable characteristics such as resistance to creep, but which may not be easily weldable to the polyethylene outer layer of the tank. The flange member is used for attachment to the body portion of the fuel system component by welding and for attachment to the polyethylene layer of the tank. To inhibit hydrocarbon vapour flow through through the flange member, the flange member includes a barrier layer which extends from one side of the flange to the other and which surrounds the central aperture. In another embodiment of the invention, the flange member is made from a material which has the necessary barrier properties.