Abstract:
The present invention provides a separating agent for optical isomers having a porous monolithic inorganic type carrier and polysaccharide or a derivative thereof supported on the monolithic inorganic type carrier, and a separation column for optical isomers in which the separating agent for optical isomers is held in a column tube. According to the invention, the separating agent for optical isomers and the separation column for optical isomers which have high asymmetry recognition ability and can be used particularly at a high flow rate when used for the separation of optical isomers is provided.
Abstract:
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Abstract:
The invention relates to a system and a process for fractionating a solution into two or more fractions. The system of the invention comprises at least two compartments having a diameter of at least about one meter and including a uniform packing of a polymer-based ion exchange resin with a bead size in the range of about 50 to about 250 nullm. The mixing volume of the fluid fronts in the system of the invention is not more than 5% of the volume of the compartment.
Abstract:
A method for determination for a given oil the relative stability of a water-in-oil emulsion that will be formed by that oil with water comprises measuring for the given oil the weight fraction of the oil that is most strongly adsorbed on a silica gel column successively eluted with n-hexane, toluene and methylene chloride-methanol mixture solvents and determining whether said weight fraction is greater than about 0.05; with a value above 0.05 being determinative of an emulsion more stable than one with a value less than 0.05.
Abstract:
A method of producing a novel separating agent for separating enantiomeric isomers, characterized by including: a step of supporting an optically active polymer compound and a compound having an asymmetric structure of a molecular weight of 1,000 or less on a carrier using a solvent; a step of removing the solvent; and a step of removing the compound having the asymmetric structure of the molecular weight of 1,000 or less by washing.
Abstract:
A closure cap system for glass chromatography columns includes a glass cylinder with unfinished shaping or work on each end, and two sealing caps. The caps have a circumference shoulder with O-rings. The O-rings having the same diameter as the diameter of the glass cylinder unfinished ends. A base and top parts, both containing openings for receiving sealing caps and the glass cylinder. Threaded rods are received by additional openings in said top and base parts. Nuts are affixed at the end of each threaded rod. The combined action of the nuts and threaded rods apply compression forces to the caps and glass cylinder for sealing in a simple and economic manner defining the system as a disposable apparatus.
Abstract:
The invention concerns a device for mounting an elongated element with axial clamping, characterized in that it consists of a body (3) forming a support base whereon are fixed a stop part (4) including a first support element (5) for one (2null) of the ends of the elongated element (2) and a retaining part (6), said parts (4 and 6) being axially separated and of a removable support block (7) comprising a through passage for receiving the elongated element (2) and capable of being positioned wedged between the retaining part (6) and the stop part (4), and of a mobile part (9) including a second support element (10) for the other end (2null) of the elongated element (2), said mobile part (9) being secured in articulation to two link rods (11, 11null) mounted at their opposite ends, potentially rotatable, on two eccentrics (12, 12null) mounted potentially rotatable on the body (3) forming the support base and rigidly assembled to a pivoting cover or lid (13) provided with a member or a zone (14) for gripping or maneuvering, said cover or lid (13) substantially covering the assembly of said parts (4, 6, 9) and said elements (5, 7, 10) when it is folded down.
Abstract:
The present invention relates to a fluid distributing device for distributing fluid into a column and to a fluid collecting device for collecting fluid from a column. The invention relates also to methods of using the devices of the present invention. The distributing device and/or the collecting device of the present invention can be used in fixed or fluidized bed reactors or columns, such as chromatographic separation columns, ion exchange columns, adsorption columns etc. A fluid distributing device comprises a) a first fluid conveying system; and b) a distributing plate, which comprises i) first means for fluid transfer for dividing the fluid flow coming from the delivering points into several partial fluid flows and for distributing the partial fluid flows into the column; and ii) first means for controlling of the partial fluid flows by differential pressure in the first means for fluid transfer.
Abstract:
Sample preparation device and method for desalting and concentrating samples prior to further analysis such as by MALDI TOF and/or electro-spray ionization (ESI) mass spectrometry. The device in accordance with an embodiment of the present invention contains a three dimensional structure preferably comprising a plurality of sorptive particles entrapped in a porous polymer matrix so as to form a device capable of carrying out solid phase extraction. The device is manufactured by introducing casting solution containing polymer and optionally particles into a housing, and subsequently exposing the device to a quench bath for a time sufficient to allow for solvent exchange and precipitation to form the composite structure in the housing. The present invention is also directed towards a method of sample preparation using the device of the present invention.
Abstract:
Packing materials useful in applications such as liquid chromatography and solid phase extraction, as well as processes for producing such packing materials are described. The packing materials are based on chemically modified diamond powders. The surfaces of the diamond powders are attached with hydrocarbon, amino, carboxylic acid, or sulfonic acid groups through CnullC, CnullN, or CnullS single bonds. The residual groups can be solely hydroxyl groups or solely hydrogen atoms. The stability of the packing materials allows regeneration of columns at pH>14 for protein separation. With hydrogen atoms as the residual groups for reverse phase diamond packings, the non-specific interaction associated with silica, polymeric, or graphitic packings can be largely eliminated. With hydroxyl groups as the residual groups for ion exchangers based on diamond powders, the non-specific interaction associated with hydrophobic sites can be largely eliminated.