Abstract:
A controllable robotic arm system comprises a base unit and a moveable torso coupled to the base unit. The moveable torso is capable of moving in at least one degree of freedom independently of movement of the base unit. At least one robotic slave arm is moveably coupled to the torso. A master control system is operable to control the robotic slave arm and the moveable torso. The master control system includes an input interface by which a user can cause control signals to be communicated to the robotic slave arm and the moveable torso.
Abstract:
An apparatus for machining metal workpieces has a frame defining machining, pick-up, and drop-off stations. A vertical slide is vertically shiftable on the machine frame. In turn a horizontal slide carrying a rotatably driven holder is horizontally shiftable on the vertical slide between respective pick-up, machining, and drop-off positions above the stations. A holder is provided in the machining station, and one of the holders is adapted to hold a tool and the other of the holders for holding a workpiece for machining the workpiece in the machining station. A pair of shields is fixed to the vertical slide and horizontally flanks the machining station. One of the shields is between the machining station and the pick-up station. Respective slidable doors on each of the shields are shiftable between a closed position blocking movement of the rotatable holder past the respective shield and an open position permitting such movement.
Abstract:
A vehicle framing system for framing an automotive vehicle body from a plurality of separate body components wherein the body components each include a reference surface. The system includes an assembly station having spaced-apart frame members positioned so that, when a vehicle carrier supporting the vehicle body components is positioned at the assembly station, the frame members extend along opposite sides of the vehicle carrier. At least two docking stations are secured to each frame member at predetermined locations. A robot mounts its associated tool arm with a docking station. At least one set of reference block and framing clamp is secured to each tool arm and these framing clamps maintain the reference surfaces of the vehicle body components against the reference blocks to hold the vehicle components at a predetermined position relative to each other. After each robot positions each associated tool arm with the docking station, the robot disengages from the tool arm and then welds the body components together by a welding gun carried by the robots.
Abstract:
Machining is possible in such a manner that an optional position of a workpiece is positioned just under a tool by rotation of a turn table in a C-axis direction, movement of the turn table in a Y-axis direction, and movement of a spindle in a Z-axis direction, so that a width of a main unit in a X-axis direction can be made shorter in comparison with machining by moving the turn table in the X-axis direction. Besides, the turn table located on a front side of the main unit, an ATC located on the rear side thereof, and a separated control panel located on the rear side of the ATC, independent from the main unit can also make the width of a machining center in the X-axis direction shorter.
Abstract:
A vehicle framing system for framing an automotive vehicle body from a plurality of separate body components wherein the body components each include a reference surface. The system includes an assembly station having spaced-apart frame members positioned so that, when a vehicle carrier supporting the vehicle body components is positioned at the assembly station, the frame members extend along opposite sides of the vehicle carrier. At least two docking stations are secured to each frame member at predetermined locations. A robot mounts its associated tool arm with a docking station. At least one set of reference block and framing clamp is secured to each tool arm and these framing clamps maintain the reference surfaces of the vehicle body components against the reference blocks to hold the vehicle components at a predetermined position relative to each other. After each robot positions each associated tool arm with the docking station, the robot disengages from the tool arm and then welds the body components together by a welding gun carried by the robots.
Abstract:
An automatic tool change machine tool having a vertical column on which a tool stock receiving therein a vertically movable tool bar is mounted. The tool bar is provided with a toolholder receiving means at the lowermost end for the attachment of a toolholder having a cutting tool. The machine tool further has a toolholder magazine storing a plurality of toolholders. The magazine is turned around the vertical column so that one of the toolholders is indexed to a predetermined position where toolholders are attached to and detached from the tool bar in one reciprocal vertical movement of the tool bar.
Abstract:
A machining apparatus includes: a shuttle unit (3) that holds a differential case (10) and rotates the differential case (10); a pair of opposed right and left machining units (4); and a tool support (6) that supports a tool (40) for machining the differential case (10), in which the pair of right and left machining units (4) each include a slide mechanism dedicated for uniaxial sliding in right and left directions, the shuttle unit (3) is movable in up and down directions and front and back directions, a tool attached to each of the pair of right and left machining units (4) enables machining an end portion of an inner surface of the differential case (10) and a flange hole of the differential case (10), the end portion surrounding a through hole, and a cutting edge of the tool (40) supported by the tool support (6) enables spherically cutting the inner surface of the differential case (10) held and rotated by the shuttle unit (3).
Abstract:
A device and method for adjusting the magnetic strength of a magnetic end effector for lift systems is described. The magnetic end effector is capable of lifting discriminate payloads by selectively varying the strength of the magnetic forces output by the magnetic end effector. An actuator can be operatively coupled to the variable strength magnet end effector, wherein the actuator is selectively actuatable to control the adjustment of the variable strength magnet. The actuator may also be configured to maintain the variable strength magnet at a desired magnetic force output strength once achieved for any given amount of time.
Abstract:
A vehicle framing system for framing an automotive vehicle body from a plurality of separate body components wherein the body components each include a reference surface. The system includes an assembly station having spaced-apart frame members positioned so that, when a vehicle carrier supporting the vehicle body components is positioned at the assembly station, the frame members extend along opposite sides of the vehicle carrier. At least two docking stations are secured to each frame member at predetermined locations. A robot mounts its associated tool arm with a docking station. At least one set of reference block and framing clamp is secured to each tool arm and these framing clamps maintain the reference surfaces of the vehicle body components against the reference blocks to hold the vehicle components at a predetermined position relative to each other. After each robot positions each associated tool arm with the docking station, the robot disengages from the tool arm and then welds the body components together by a welding gun carried by the robots.
Abstract:
The present invention provides an automatic-tool-changer-equipped lathe which has excellent rigidity for holding tools, which causes no interference between a tool and a work, and which has no limitation on the number of changeable tools. The lathe has: a slide 15 relatively movable in the X-axis and Z-axis directions relative to a work head 12; a tool-rest 18 provided on the slide 15 for holding a tool; and a tool changer 20 for storing a plurality of tools and indexing each of the tools at a tool changing position. The tool-rest 18 can turn on the X-Z plane and comprises one tool spindle 19 acting as a tool insert part. The tool spindle 19 is secured to the tool-rest 18.