Abstract:
A first aspect of the present invention is a constant force compression construct, comprising: (a) a plurality of compressible layers, each compressible layer comprising a plurality of interconnected flexible struts configured as a regular hexagonal lattice of repeating unit cells, with the layers spaced apart from one another, and with the unit cells of each layer aligned with one another; and (b) a plurality of beams interconnecting each of the compressible layers with each respective adjacent compressible layer to form a three-dimensional lattice having an upper portion, a lower portion, and a compressible region therebetween, with the repeating unit cells contained in the compressible region.
Abstract:
Preforms including fiber reinforced nodes for use in fiber reinforced composite structures and methods for making fiber reinforced composite structures. Preforms with woven fabric elements extending radially from a common node include at least one reinforcing fiber interwoven between at least two elements and passing through the node. A method of assembling preform structures using the preforms to provide a structure with reinforced nodes.
Abstract:
A product made from an extruded sheet or web of material having a non-linear cross-section, and the process of making the product are provided. The extruded web or extrudate is plastically deformed in selected areas and then folded. When folded into the appropriate shape, the extrudate is formed into a product having a plurality of cells. The cells may have one or more openings, allowing access to an interior of the cell and reducing the weight of the product.
Abstract:
A three-dimensional part printed using an additive manufacturing technique, which includes sets of printed cell layers, each defining an array of hollow cells with wall segments, and sets of printed transition layers, each being disposed between adjacent printed cell layers, where the sets of printed transition layers each comprise sloped walls that diverge from a first portion of the wall segments and that converge towards a second portion of the wall segments to interconnect the hollow cells of adjacent printed cell layers, and where the sloped walls of adjacent printed transition layers have printing orientations that are rotated from each other in a build plane.
Abstract:
A molded plastic core structure acceptable to numerous uses and characterized by high structural strength to weight ratio. The structure typically comprises a two-sided array of cell-like receptacles having inwardly sloping walls that form floors. Receptacles in one side are inverted relative to receptacles in the opposite side and are inter-nested between one another to minimize the volume of plastic used. The walls and floors can be circular, square or triangular in plan view. Where square or triangular, the walls include both major and minor wall sections alternatingly interspersed with one another. Two or more core structures can be joined to one another with the receptacles of one panel being aligned with the receptacles of the joined other panel to form closed, syntactic cells that give the resulting structure high enclosed volume to surface area and weight ratios.
Abstract:
An object of the present invention is to provide a sandwich panel which is capable of securing its flexural or its shear rigidity as a whole and securing a compression rigidity of a core material itself, while at the same time of readily reducing the weight of the sandwich panel.According to an aspect of the invention, there is provided a sandwich panel comprising two resin skin sheets, and a resin core material sandwiched between the two resin skin sheets and planarly adhered to each of the two resin skin sheets, said core material consists of an foamed resin with a predetermined expanding ratio and has a plurality of recesses each of which forms an opening formed on at least one surface thereof and extends inwardly to define an inner space closed by the corresponding skin sheet, the number of said recesses and the total area of the openings are determined in such a manner that the planer adhesion of at least one surface of the resin core material to the corresponding skin sheet is maintained, while at the same time solid portions of the foamed resin of the resin core material excluding said inner space formed by the plurality of recesses function to support a compressive load in the thickness direction of the resin core material, under the predetermined void volume allocated to said plurality of recesses in relation with said predetermined expanding ratio.
Abstract:
A molded product and a unified molded product that are lightweight and also high in rigidity to meet the requirements from the market can be produced from a molded product comprising: a first member (I) containing a planar surface layer part and a protruding core part, and a second member (II) unified therewith, the first member (I) being of a fiber-reinforced resin (A) formed mainly of a reinforcing fiber (a1) and a matrix resin (a2), part of the threads of the reinforcing fiber (a1) extending penetratingly between the surface layer part and the core part, the part of the threads of the reinforcing fiber (a1) extending penetratingly at a rate of 400 threads/mm2 or more through the boundary surface between the surface layer part and the core part, the reinforcing fiber (a1) having a number-average fiber length Ln of 1 mm or more, and the core part forming a hollow structure.
Abstract:
A composite panel includes a honeycomb core sandwiched by a pair of skins that are attached directly to the core with no separate adhesive layer. The skins are impregnated with a resin material that is unevenly distributed between first and second surfaces, and direct contact is established between the surfaces with the greater resin distribution and the core, reducing weight and eliminating the manufacturing step of incorporating an adhesive layer therebetween.
Abstract:
A self supporting panel system used to fabricate ceilings, floors, walls, or roofs. The panel system is assembled from a plurality of panels, each having a core that is sandwiched between opposing plate members. In a preferred embodiment, the core of each panel includes a unifying material to enhance the load bearing capacity of the panel.
Abstract:
A method of manufacturing an electronic component includes disposing a heat radiation material including a plurality of linear structures of carbon atoms and a filling layer of a thermoplastic resin provided among the plurality of linear structures above a first substrate, disposing a blotting paper above the heat radiation material, making a heat treatment at a temperature higher than a melting temperature of the thermoplastic resin and absorbing the thermoplastic resin above the plurality of linear structures with the absorption paper, removing the blotting paper, and adhering the heat radiation material to the first substrate by cooling to solidify the thermoplastic resin.