Abstract:
A liquefier assembly for use in an additive manufacturing system, which includes a rigid member having a gap, a liquefier tube operably disposed in the gap, one or more heater assemblies disposed in the gap in contact with the liquefier tube, and configured to heat the liquefier tube in a zone-by-zone manner, preferably one or more thermal resistors disposed in the gap between the rigid member and the heater assemblies, and preferably one or more sensors configured to operably measure pressure within the liquefier tube. The one or more heater assemblies may be operated to provide dynamic heat flow control.
Abstract:
A three-dimensional part printed using an additive manufacturing technique, which includes sets of printed cell layers, each defining an array of hollow cells with wall segments, and sets of printed transition layers, each being disposed between adjacent printed cell layers, where the sets of printed transition layers each comprise sloped walls that diverge from a first portion of the wall segments and that converge towards a second portion of the wall segments to interconnect the hollow cells of adjacent printed cell layers, and where the sloped walls of adjacent printed transition layers have printing orientations that are rotated from each other in a build plane.
Abstract:
An additive manufacturing system for printing three-dimensional parts, the system comprising a heatable chamber with a port, a print foundation, a print head configured to print a three-dimensional part onto the print foundation in a layer-by-layer manner along a printing axis, and a drive mechanism configured to index the print foundation along the printing axis such that, while the print head prints the three-dimensional part, the print foundation and at least a portion of the three-dimensional part pass through the port and out of the heated chamber.
Abstract:
A liquefier assembly for use in an additive manufacturing system, which includes a rigid member having a gap, a liquefier tube operably disposed in the gap, one or more heater assemblies disposed in the gap in contact with the liquefier tube, and configured to heat the liquefier tube in a zone-by-zone manner, preferably one or more thermal resistors disposed in the gap between the rigid member and the heater assemblies, and preferably one or more sensors configured to operably measure pressure within the liquefier tube. The one or more heater assemblies may be operated to provide dynamic heat flow control.
Abstract:
A three-dimensional part printed using an additive manufacturing technique, which includes sets of printed cell layers, each defining an array of hollow cells with wall segments, and sets of printed transition layers, each being disposed between adjacent printed cell layers, where the sets of printed transition layers each comprise sloped walls that diverge from a first portion of the wall segments and that converge towards a second portion of the wall segments to interconnect the hollow cells of adjacent printed cell layers, and where the sloped walls of adjacent printed transition layers have printing orientations that are rotated from each other in a build plane.
Abstract:
An additive manufacturing system for printing three-dimensional parts, the system comprising a heatable region, a receiving surface, a print head configured to print a three-dimensional part onto the receiving surface in a layer-by-layer manner along a printing axis, and a drive mechanism configured to index the receiving surface along the printing axis such that the receiving surface and at least a portion of the three-dimensional part out of the heated region.
Abstract:
A print head assembly that includes a print head carriage and multiple, replaceable print heads that are configured to be removably retained in receptacles of the print head carriage. The print heads each include a cartridge assembly and a liquefier pump assembly retained by the cartridge assembly.
Abstract:
An additive manufacturing system for printing three-dimensional parts, the system comprising a heatable chamber with a port, a print foundation, a print head configured to print a three-dimensional part onto the print foundation in a layer-by-layer manner along a printing axis, and a drive mechanism configured to index the print foundation along the printing axis such that, while the print head prints the three-dimensional part, the print foundation and at least a portion of the three-dimensional part pass through the port and out of the heated chamber.
Abstract:
A liquefier assembly for use in an extrusion-based additive manufacturing system, the liquefier assembly comprising a downstream portion having a first average inner cross-sectional area, and an upstream having a second average inner cross-sectional area that is less than the first inner cross-sectional area, the upstream portion defining a shoulder configured to restrict movement of a melt meniscus of a consumable material.
Abstract:
A liquefier assembly for use in an additive manufacturing system, which includes a rigid member having a gap, a liquefier tube operably disposed in the gap, one or more heater assemblies disposed in the gap in contact with the liquefier tube, and configured to heat the liquefier tube in a zone-by-zone manner, preferably one or more thermal resistors disposed in the gap between the rigid member and the heater assemblies, and preferably one or more sensors configured to operably measure pressure within the liquefier tube. The one or more heater assemblies may be operated to provide dynamic heat flow control.