Abstract:
Provided is a main spindle mechanism for a machine tool such that even in the case of a small-diameter spindle, it is possible to increase the torque transmitted to a large cutter and it is possible to prevent contact to and collisions with the workpiece. The main spindle mechanism, which is provided to a machine tool that cuts a workpiece by means of a cutter, is characterized by having: a spindle that transmits torque from the drive power source of the machine tool and is formed with outer teeth at the outer periphery of the tip thereof; a large cutter arbor provided with a shaft for attaching the large cutter and a base at which outer teeth are formed having the same diameter as the outer teeth of the spindle; and a gear-coupling-shaped sleeve that is provided in a manner so as to cover the base of the large cutter arbor and the tip of the spindle, and at which are formed inner teeth that mesh with both the outer teeth of the spindle and the outer teeth of the large cutter arbor.
Abstract:
A machining unit for a program-controlled machine tool having a measuring and monitoring device for monitoring the position and condition of a tool shaft in the tool holder. This measuring and monitoring device includes a plurality of axial sensors and radial sensors and an evaluating unit for the measurement results detected by the sensors. An outer ring is releasably fastened to the spindle housing and contains an electronic transmission element and terminals for energy and data cables. A rotor is assigned to this stationary outer ring and contains the sensors and is coupled to the outer ring for the non-contact data transmission. The rotor is releasably fastened to the front end face of the spindle by bolted connections.
Abstract:
A machine tool has a mechatronic assembly which has a machine spindle and has a tool head which is held on the machine spindle and which has a basic body and also at least one working slide, which is adjustable relative to the basic body, for holding a tool. The mechatronic assembly contains an electric adjusting motor which acts on the working slide. The machine tool has a support device which holds the mechatronic assembly and which has an articulated joint arrangement at which the mechatronic assembly can be pivoted at least about a first axis and about a second axis which differs from the first axis.
Abstract:
A spindle unit includes: a main spindle that holds a rotary tool, and that is rotated; bearings by which the main spindle is rotatably supported; and a damper bearing by which the main spindle is rotatably supported, and that has a damping coefficient larger than damping coefficients of the bearings. The damping coefficient of the damper bearing is set to a value within a range from 10,000 to 1,000,000 N·s/m.
Abstract:
Spindle units are provided for machining devices, in particular for a lathing spindle unit, center drive assembly or milling spindle unit. The spindle unit comprises: a spindle shaft rotatably supported in a housing, a chucking device disposed at the spindle shaft for clamping a workpiece or a tool, a motor drive connected to the spindle shaft for driving the spindle shaft around a drive axis, a clamping device for clamping the spindle shaft at a freely selectable angular position around the drive axis, wherein the clamping device is disposed between the spindle shaft and a stationary part of the spindle unit, and an actuating device for actuating and/or releasing the clamping device. The clamping device can be axially actuated in the direction of the drive axis such that an axial or substantial axial clamping force acts in the direction of the drive axis with the clamping device being actuated.
Abstract:
A spindle attachment includes a device body having an attachment surface detachably attached to an end face of a spindle head. Fixed and movable teeth move the body in a direction of an axial line of the spindle to engage the spindle head and the body so as to freely restrict or release rotation of the body with respect to the spindle head. A coil spring urges the body so that the attachment surface is pressed onto the end face of the spindle head with the fixed and movable teeth ready for engagement. A pressure cylinder causes fluid pressure to act on the attachment surface against the spring force to release engagement between the fixed and movable teeth. A key and a key groove transmit rotation of the spindle to the body with the fluid pressure of the cylinder acting on the attachment surface of the device body.
Abstract:
A carriage is moved in a direction including a Y axis component in order to move a turning process tool that is attached to a tool spindle along a horizontal line that is perpendicular to a Z axis, and thus, a turning process is carried out on a workpiece which is attached to a workpiece spindle.
Abstract:
A machining apparatus for grinding, milling, polishing or the like of a dental workpiece. The machining apparatus contains a machining tool, a housing to which the machining tool is mounted rotatably about an axis of rotation relative to the housing, and a holding device to which the housing is fixed. The housing is mounted yieldingly movably to the holding device in dependence on forces exerted on the machining tool.
Abstract:
A clamping unit for releasably holding a tubular toolholder shank has a base member with a canister sleeve mounted therein. To secure the canister sleeve within the base member and to minimize movement caused by tolerances, retention bolts are threadably mated within the base member to engage a slot within the canister, wherein the relationship between the retention bolt and the slot is such that the retention bolt is intentionally misaligned, so that when engaged with the canister slot, the retention blot resiliently deflects and provides both an axial force and a lateral force upon a canister sleeve.
Abstract:
A machining tool comprises a frame mounting an extendable yoke slidable with respect to the frame in a first direction through one or more mounting pillars. A tool motor is mounted on the yoke. A drive mechanism for the yoke is also mounted in the frame, with a drive motor to drive the yoke drive mechanism. A belt is between pulleys on the drive motor and mechanism to transmit drive between them. A rotatable sleeve is around the tool motor and on which sleeve the belt engages on opposite sides of the tool motor, whereby the tool motor can extend between the drive motor and mechanism, thereby resulting in a compact arrangement of the tool.