摘要:
A number of orthopedic surgical instruments are also disclosed. A method, apparatus, and system for fabricating such instruments are also disclosed.
摘要:
A machining unit for a program-controlled machine tool having a measuring and monitoring device for monitoring the position and condition of a tool shaft in the tool holder. This measuring and monitoring device includes a plurality of axial sensors and radial sensors and an evaluating unit for the measurement results detected by the sensors. An outer ring is releasably fastened to the spindle housing and contains an electronic transmission element and terminals for energy and data cables. A rotor is assigned to this stationary outer ring and contains the sensors and is coupled to the outer ring for the non-contact data transmission. The rotor is releasably fastened to the front end face of the spindle by bolted connections.
摘要:
A number of orthopaedic surgical instruments are also disclosed. A method, apparatus, and system for fabricating such instruments are also disclosed.
摘要:
In a machine tool having a rotary shaft for use in rotating a tool or a workpiece, a plurality of stable rotation speeds at which the chatter vibrations are expected to be suppressed, and at least one switching rotation speed across which a dynamic characteristic of a rotary shaft system changes are stored. The plurality of stable rotation speeds may be determined from chatter vibrations detected using a vibration detection unit. Optimum rotation speed that is a rotation speed to which a rotation speed of the rotary shaft is changeable without crossing the switching rotation speed is selected from the plurality of stable rotation speeds, and the rotation speed of the rotary shaft is changed to the optimum rotation speed. Thus, chatter vibrations generated during rotation of the rotary shaft can be suppressed effectively.
摘要:
Systems, methods and apparatus are provided through which in some aspects a custom orthopedic implant is designed, fabricated and sterilized for immediate surgical use to treat a patient's injury. In some aspects, the orthopedic implant is designed using patient and injury specific scan data, fabricated using a five axis milling machine, and sterilized with a sterilization system. In other aspects, the fabricated orthopedic implant is transferred into the sterilization system with a transport system. In some aspects, methods to design, fabricate and sterilize a custom orthopedic implant are presented. In other aspects, patient and injury specific scan data is used to design and plan the placement of a custom orthopedic implant to treat the injury, and the custom orthopedic implant is then fabricated and sterilized to be used in surgery.
摘要:
A number of orthopaedic surgical instruments are also disclosed. A method, apparatus, and system for fabricating such instruments are also disclosed.
摘要:
A number of orthopaedic surgical instruments are also disclosed. A method, apparatus, and system for fabricating such instruments are also disclosed.
摘要:
A cutting machine control determines a required stock-removal amount from a work for each of sections into which a tool path is divided, and feeds the rotating cutting tool at a speed that is controlled according to the required stock-removal volume so that the rotating cutting tool removes a predetermined or target stock-removal volume of material for the component path section from a work per unit time.
摘要:
One embodiment of the present invention is a compact, low-cost, lightweight, versatile and easy-to-operate, processor-controlled carving and multi-purpose shaping device (nullPCCMPS machinenull). The PCCMPS machine that represents one embodiment of the present invention is configured, in part, similarly to common, commercially available portable wood planers and ubiquitous laser and ink-jet computer printers, with work pieces fed into the PCCMPS machine in a horizontal direction. The PCCMPS machine includes a motor-powered cutting head that can power detachable bits to drill, cut, shape, and rout a work piece under processor and computer control. The cutting head may be translated, under processor control, back and forth across the surface of the work piece in a direction perpendicular to the direction in which the work piece is fed into the PCCMPS machine and moved by motor-powered rollers. The cutting head may be translated up and down, in a vertical direction, approximately perpendicular to the surface of the work piece. The processor can thus position a cutting bit at any point on a surface of, near the surface of, or within the work piece, via a combination of lateral and vertical translations of the cutting head and horizontal translation of the work piece, and can control the speed at which the bit rotates as the computer moves the rotating bit from one position to another position relative to the surface of the work piece in order to carve and shape elaborate, three-dimensional designs onto the work piece.