Abstract:
Feed tools and methods of use for initiating a change in a spindle feed direction from an advance direction that moves the spindle towards a workpiece to a retract direction that moves the spindle away from the workpiece. The tool and methods may use a thrust overload force that is generated on one or more of the components to initiate the shift from forward to retract and/or a lift ring that acts on one or more of the components. The tool and methods may also include a two-stage piston to accomplish the shift. The various components may be used independently or in combination within the tool.
Abstract:
Positive feed tools and methods of use that include a spindle with a distal end configured to receive a tool bit. The spindle is movable in a forward direction for the tool bit to act on a workpiece, and a retract direction to move the tool bit away from the workpiece. The spindle is configured to retract to a home position at which an air motor that drives the spindle is shut off. The feed tool includes a clutch to prevent jamming of the spindle at the home position in the event the air motor is not shut off at the proper time.
Abstract:
A motor control device includes a load torque estimation unit configured to estimate a load torque applied to a motor, a torque comparison unit configured to compare the load torque with a reference torque, a time measurement unit configured to measure a time span during which the load torque is higher than the reference torque, a time comparison unit configured to compare the time span with a reference time, and a decision unit configured to decide that the motor is subjected to an excessive load when the time span exceeds the reference time.
Abstract:
A processing device includes a mounting base, a cutter holder, and a brake. The brake includes a driving member, a resisting member, and an elastic member. The driving member includes a main body and a driving shaft movably placed in the main body. The driving shaft is driven to move in a straight line by the main body. One end of the driving shaft is movably coupled to the cutter holder, and another end of the driving shaft is coupled to the resisting member. The elastic member is positioned between the main body and the resisting member. The driving shaft is configured to move toward one side of the driving member adjacent to the elastic member under an elastic restoring force of the elastic member, whereby the cutter holder moves with the driving shaft toward one end of the driving member adjacent to the elastic member.
Abstract:
A tool turret includes a tool disk (1) having at least one tool receptacle (7) for a machining tool and being fastened to an accommodating disk (51). The disk can be swiveled about a support column that defines a swivel axis into positions in which the particular machining tool is in a working position. A contact surface (55) is provided on the tool disk (1) and can be clamped to an accommodating surface (53) on the accommodating disk (51) by a clamping device. The clamping device has an annular groove on one disk to be clamped. The annular groove is concentric to the swivel axis, is open radially outside and has at least one inner slanted surface (81). At least one compression piece (57) is on the other disk, penetrates the annular groove (61) under compressive force and has a wedge surface (79). In interaction with the slanted surface (81) of the annular groove (61), the wedge surface produces a force component as a clamping force from the compressive force pressing the contact surface (55) and the accommodating surface (53) against each other.
Abstract:
A positive feed tool that includes a spindle that is axially moved along a feed path to perform work on a workpiece. The tool includes a gear head with a plurality of gears configured to rotate and axially move the spindle. The gear head is designed to change the changing gears within the gear head to change feed rates on the spindle. The gears can be interchanged without a complete disassembly of the gear head.
Abstract:
A machining apparatus for grinding, milling, polishing or the like of a dental workpiece. The machining apparatus contains a machining tool, a housing to which the machining tool is mounted rotatably about an axis of rotation relative to the housing, and a holding device to which the housing is fixed. The housing is mounted yieldingly movably to the holding device in dependence on forces exerted on the machining tool.
Abstract:
In a spindle head for a machine tool in which a spindle (10) to which a tool is mounted is rotated around an axial line of a support shaft (58, 59), two rotating members (9, 58) that form a rotation transmission mechanism for rotating the spindle (10) and that transmit drive force of the rotation driving device (56) are fastened to each other at respective connection sections thereof by a bolt group (301) and are connected to each other so as to be prevented from rotating relative to each other by friction force resulting from the fastening. Rotation prevention torque based on the friction force is a value greater than torque applied to the connection sections during processing and smaller than torque applied to the connection sections when external force that causes the spindle (10) to deform beyond a permissible range is applied to the spindle (10). Therefore, even if the tool or the spindle (10) collides with, for example, a processing tool, the spindle (10) does not become deformed beyond the permissible range.
Abstract:
The invention relates to an overload protection device (1) comprising a housing (2) which is designed to be fixed to a manipulation device. The overload protection device comprises a tool holder (3) for fixing a tool that is attached to the housing in a displaceable manner, a pre-tensioning unit (4) for generating a pre-tensioning force between the housing and the tool holder, the pre-tensioning unit being configured as a piston assembly with a pressure piston which can be loaded by a medium and with a switching unit (5) that operates by means of relative displacement between the housing and the tool holder. The switching unit has a least one electrically conducting switching surface (6) and at least one electrically conducting contact element (7) that can be brought into electrical contact with the switching surface, the switching surface (6) and the contact element (7) being provided on an opposing surface section (8) of the tool holder and the housing. The contact element (7) is configured as a sealing element, which seals off at least sections of the pressure piston from the switching surface (6).
Abstract:
A laser processing head collision protection apparatus includes a carrier member, and a laser processing head detachably coupled to the carrier member by a plurality of pairs of truncated cones.