Abstract:
A method and apparatus (100) of treating tissue adjacent a bodily conduit using thermotherapy, while preventing obstructions of the bodily conduit due to edema, includes injection of a drug-encapsulated within a heat-sensitive carrier, such as a liposome, within a region of tissue to be treated. The heat produced by the energy-emitting source (110) heats a portion of the tissue surrounding the bodily conduit to a temperature of approximately 43° C. for a time sufficient to destroy the heated portion of the tissue. In addition, the heat produced by the energy-emitting source (110) activates the heat-sensitive carrier to activate the release of the encapsulated drug and the drug targets the tissue to be heated. The focused energy of the energy-emitting source together with the compression acting on the target area can assist in delivering drugs to the target area so that a natural stent has a long term efficacy.
Abstract:
The invention provides a water soluble complex comprising an inner core of a metal or semi-conductor nanoparticle. The nanoparticle is coated with a hydrophobic ligand, which is encapsulated in a micelle. In an aqueous medium, the micelle comprises a hydrophilic shell and a hydrophobic core, the hydrophilic shell comprising a plurality of hydrophilic moieties, the hydrophobic core comprising a plurality of hydrophobic moieties, each hydrophobic moiety comprising at least one chain, each chain comprising a minimum of 8 atoms; wherein the total number of atoms in all chains for each moiety comprises at least 24 atoms. The micelle has a minimum average diameter of approximately 5 nm and a maximum average diameter of approximately 45 nm.
Abstract:
Methods for detecting anti-lipidic particle antibodies and lipidic particles in cellular membranes for the diagnosis of diseases associated with antiphospholipid syndrome are disclosed. Kits or sets to put these methods of diagnosis into practice are disclosed. Methods for the therapeutic treatment of diseases associated with antiphospholipid syndrome are disclosed as well. In addition, methods for the detection of the diverse physiologic states of cells and kits useful for this are also disclosed.
Abstract:
Lipid vesicle particles capable of being targeted to a cell type of interest, said particle incorporating a peptide which is responsive to a predetermined metabolic signal from the targeted cell so as to modulate the permeability of the particle, said particle further incorporating a species to be targeted to the cell which is activated on said modulation of permeability. The particles may be used in methods for detecting cells, methods of treating cells and also therapeutically.
Abstract:
Provided are a method for detecting biomaterials, a method for fabricating a chip for biomaterial detection and a chip for biomaterial detection. The method for detecting biomaterials is characterized by comprising the steps of: (S1) immobilizing polydiacetylene liposomes onto a substrate; (S2) linking the polydiacetylene liposomes together and layering them on the substrate; (S3) immobilizing a material which forms a complementary binding with a subject biomaterial to be detected onto the polydiacetylene liposomes; (S4) exposing the resulted polydiacetylene liposome to UV light so as to form a chip for biomaterial detection; (S5) applying the subject biomaterial to be detected to the chip for biomaterial detection for reaction; and (S6) measuring a fluorescent signal from the chip for biomaterial detection.
Abstract:
A process for producing a small-sized, lipid-based cochleate. Cochleates are derived from liposomes which are suspended in an aqueous two-phase polymer solution, enabling the differential partitioning of polar molecule based-structures by phase separation. The liposome-containing two-phase polymer solution, treated with positively charged molecules such as Ca2+ or Zn2+, forms a cochleate precipitate of a particle size less than one micron. The process may be used to produce cochleates containing biologically relevant molecules.
Abstract:
Novel lipid-nucleic acid particulate complexes which are useful for in vitro or in vivo gene transfer are described. The particles can be formed using either detergent dialysis methods or methods which utilize organic solvents. Upon removal of a solubilizing component (i.e., detergent or an organic solvent) the lipid-nucleic acid complexes form particles wherein the nucleic acid is serum-stable and is protected from degradation. The particles thus formed have access to extravascular sites and target cell populations and are suitable for the therapeutic delivery of nucleic acids.
Abstract:
The present invention provides a sensor surface comprising: a substrate coated with a free electron metal; and a matrix layer disposed on the free electron metal, wherein the matrix layer comprises an organic compound having a boronic acid complexing moiety. The matrix is preferably a self-assembled monolayer (SAM), a mixed self-assembled monolayer (mSAM), or combinations thereof.
Abstract:
A cartridge for analyzing a fluid sample has a body defining at least first and second channels and a cavity separating the channels. An end of the first channel is positioned on a first side of the cavity, and an end of the second channel is positioned on a second side of the cavity. The cavity is defined by a first curved surface positioned adjacent the end of the first channel, a second curved surface positioned adjacent the end of the second channel, and at least a third surface between the first and second curved surfaces. The cartridge also comprises an elastic membrane for establishing a seal with the first and second curved surfaces to prevent the flow of fluid between the channels. The third surface is recessed from the first and second surfaces to provide a gap between the membrane and the third surface when the membrane is pressed against the first and second surfaces. A cartridge having a conical valve seat is also disclosed.
Abstract:
Methods for detecting anti-lipidic particles antibodies and lipidic particles in cellular membranes for the diagnosis of diseases associated to the antiphospholipid syndrome are disclosed. Kits or sets to put these methods of diagnosis into practice are also disclosed. Methods for the therapeutically treatment of diseases associated to the antiphospholipid syndrome are disclosed as well. In addition, methods for the detection of the diverse physiologic states of cells, and those kits useful for this are also disclosed.