Abstract:
A method and apparatus (100) of treating tissue adjacent a bodily conduit using thermotherapy, while preventing obstructions of the bodily conduit due to edema, includes injection of a drug-encapsulated within a heat-sensitive carrier, such as a liposome, within a region of tissue to be treated. The heat produced by the energy-emitting source (110) heats a portion of the tissue surrounding the bodily conduit to a temperature of approximately 43° C. for a time sufficient to destroy the heated portion of the tissue. In addition, the heat produced by the energy-emitting source (110) activates the heat-sensitive carrier to activate the release of the encapsulated drug and the drug targets the tissue to be heated. The focused energy of the energy-emitting source together with the compression acting on the target area can assist in delivering drugs to the target area so that a natural stent has a long term efficacy.
Abstract:
A method and apparatus of treating tissue adjacent a bodily conduit using thermotherapy, while preventing obstructions of the bodily conduit due to edema, includes injection of a drug-encapsulated within a heat-sensitive carrier, such as a liposome, within a region of tissue to be treated. The heat produced by the energy-emitting source heats a portion of the tissue surrounding the bodily conduit to a temperature of approximately 43° C. for a time sufficient to destroy the heated portion of the tissue. In addition, the heat produced by the energy-emitting source activates the heat-sensitive carrier to activate the release of the encapsulated drug and the drug targets the tissue to be heated. The focused energy of the energy-emitting source together with the compression acting on the target area can assist in delivering drugs to the target area so that a natural stent has a long term efficacy.
Abstract:
A method and apparatus of treating tissue adjacent a bodily conduit using thermotherapy, while preventing obstructions of the bodily conduit due to edema, includes injection of a drug-encapsulated within a heat-sensitive carrier, such as a liposome, within a region of tissue to be treated. The heat produced by the energy-emitting source heats a portion of the tissue surrounding the bodily conduit to a temperature of approximately 43° C. for a time sufficient to destroy the heated portion of the tissue. In addition, the heat produced by the energy-emitting source activates the heat-sensitive carrier to activate the release of the encapsulated drug and the drug targets the tissue to be heated. The focused energy of the energy-emitting source together with the compression acting on the target area can assist in delivering drugs to the target area so that a natural stent has a long term efficacy.
Abstract:
A method and apparatus of treating tissue adjacent to a bodily conduit using thermotherapy, while preventing obstructions of the bodily conduit due to edema employs the circulation of warmed fluid to maintain the temperature of the bodily conduit walls and compresses the tissue to be treated to increase the effectiveness of the irradiated heat. An energy-emitting source containing catheter is inserted in a bodily conduit and is positioned in a region of the tissue to be treated so that the energy-emitting source radiates energy to the tissue to be treated. Fluid warmed to over 30° C. is circulated into and through the catheter to warm walls of the bodily conduit adjacent the catheter. The circulated fluid inflates a balloon to a pressure to compress the tissue to be treated. The combination of warmed fluid over 30° C. being circulated adjacent the bodily conduit to maintain the warmth in its walls and the compression of the tissue to be treated enables a natural stent to be formed that remains after the catheter and compression balloon is removed.
Abstract:
A method of treating cancer by introducing heat into cancerous tissue and delivering a liposome containing an active agent or a thermo-activated drug, gene or virus to said tissue. The heat delivered is sufficient to release the active agent or activate the thermo-activated drug, gene or virus. The cancer can be esophageal cancer. The liposome containing an active agent or a thermo-activated drug, gene or virus can be a thermosensitive liposome. The active agent can be an anti-neoplastic agent, for example doxorubicin.
Abstract:
A monopole phased array thermotherapy applicator radiating radiofrequency energy for inducing a temperature rise in a target within a body includes a plurality of monopole elements each for transmitting electric-field radiation; a metallic waveguide with an RF reflecting ground plane surface with a plurality of circular holes for mounting the monopole elements where the metallic waveguide forms an aperture for receiving a body to be treated; a waveform generator providing a source of electric field coupled to each monopole radiating element through a respective phase and power weighting network; at least one electric field probe positioned on a skin surface of the body for detecting electric field radiation from the plurality of monopole elements; and a controller circuit coupled to the electric field probe received feedback signals to adjust the phase and power delivered to the plurality of monopole elements so that one or more adaptive nulls are formed on the surface of the body and a focus is formed at the target tissue to be treated with thermotherapy.
Abstract:
An apparatus for treatment of tissue within a body requiring thermotherapy includes a catheter to be inserted into a bodily conduit, an energy-emitting source disposed within the catheter, a compression balloon surrounding the energy-emitting source where the compression balloon has an inflated diameter that is greater than that of the bodily conduit in a relaxed state and an outside surface of the balloon is coated with one of gene modifiers and drug or medication, and means for activating the energy-emitting source to radiate energy to heat the drug-coated compression balloon and tissue to be treated whereby the heated drug-coated compression balloon effectively delivers the one of the gene modifiers and drug or medication to a target area of the diseased tissue. In addition, methods for using the above apparatus to treat diseased tissue are disclosed.
Abstract:
A method and apparatus (100) of treating tissue adjacent a bodily conduit using thermotherapy, while preventing obstructions of the bodily conduit due to edema, includes injection of a drug-encapsulated within a heat-sensitive carrier, such as a liposome, within a region of tissue to be treated. The heat produced by the energy-emitting source (110) heats a portion of the tissue surrounding the bodily conduit to a temperature of approximately 43° C. for a time sufficient to destroy the heated portion of the tissue. In addition, the heat produced by the energy-emitting source (110) activates the heat-sensitive carrier to activate the release of the encapsulated drug and the drug targets the tissue to be heated. The focused energy of the energy-emitting source together with the compression acting on the target area can assist in delivering drugs to the target area so that a natural stent has a long term efficacy.
Abstract:
An apparatus for treatment of tissue within a body requiring thermotherapy includes a catheter to be inserted into a bodily conduit, an energy-emitting source disposed within the catheter, a compression balloon surrounding the energy-emitting source where the compression balloon has an inflated diameter that is greater than that of the bodily conduit in a relaxed state and an outside surface of the balloon is coated with one of gene modifiers and drug or medication, and means for activating the energy-emitting source to radiate energy to heat the drug-coated compression balloon and tissue to be treated whereby the heated drug-coated compression balloon effectively delivers the one of the gene modifiers and drug or medication to a target area of the diseased tissue. In addition, methods for using the above apparatus to treat diseased tissue are disclosed.
Abstract:
An apparatus for treatment of tissue within a body requiring thermotherapy includes a catheter to be inserted into a bodily conduit, an energy-emitting source disposed within the catheter, a compression balloon surrounding the energy-emitting source where the compression balloon has an inflated diameter that is greater than that of the bodily conduit in a relaxed state and an outside surface of the balloon is coated with one of gene modifiers and drug or medication, and means for activating the energy-emitting source to radiate energy to heat the drug-coated compression balloon and tissue to be treated whereby the heated drug-coated compression balloon effectively delivers the one of the gene modifiers and drug or medication to a target area of the diseased tissue. In addition, methods for using the above apparatus to treat diseased tissue are disclosed.