Abstract:
A broad-spectrum laser for use in a MEMS laser scanning display device is provided. In one example, the broad-spectrum laser includes a laser diode emitter with plural quantum wells each having a different spectral peak. In another example, the broad-spectrum laser includes a laser diode emitter with a tunable absorber to achieve a broadened emissions spectrum. In another example, the broad-spectrum laser includes a laser diode emitter array having plural individual emitters with different spectral peaks.
Abstract:
A device including one or more layers with lateral regions configured to facilitate the transmission of radiation through the layer and lateral regions configured to facilitate current flow through the layer is provided. The layer can comprise a short period superlattice, which includes barriers alternating with wells. In this case, the barriers can include both transparent regions, which are configured to reduce an amount of radiation that is absorbed in the layer, and higher conductive regions, which are configured to keep the voltage drop across the layer within a desired range.
Abstract:
A device comprising a semiconductor layer including a plurality of compositional inhomogeneous regions is provided. The difference between an average band gap for the plurality of compositional inhomogeneous regions and an average band gap for a remaining portion of the semiconductor layer can be at least thermal energy. Additionally, a characteristic size of the plurality of compositional inhomogeneous regions can be smaller than an inverse of a dislocation density for the semiconductor layer.
Abstract:
Semiconductor structures for laser devices are provided. The semiconductor structures have a quantum cascade laser structure comprising an electron injector, an active region, and an electron extractor. The active region comprises an injection barrier, a multiquantum well structure, and an exit barrier. The multiquantum well structure can comprise a first barrier, a first quantum well, a second barrier, a second quantum well, and a third barrier. The energies of the first and second barrier are less than the energy of the third barrier. The energy difference between the energy of the second barrier and the energy of the third barrier can be greater than 150 meV and the ratio of the energy of the third barrier to the energy of the second barrier can be greater than 1.26.
Abstract:
Semiconductor substrate is disclosed having quantum wells having first bandgap, and quantum wells having second bandgap less than second bandgap. Semiconductor structure is disclosed comprising substrate having quantum wells having given bandgap, other quantum wells modified to bandgap greater than given bandgap. Semiconductor substrate is disclosed comprising wafer having quantum wells, section of first bandgap, and section of second bandgap greater than first bandgap. Method for forming semiconductor substrate is provided, comprising providing wafer having given bandgap, depositing dielectric cap on portion and rapid thermal annealing to tuned bandgap greater than given bandgap. Semiconductor structure is disclosed comprising substrate having quantum wells modified by depositing cap and rapid thermal annealing to tuned bandgap greater than given bandgap. Method for forming semiconductor substrate is disclosed, comprising providing wafer having quantum wells having given bandgap, depositing cap on portion and rapid thermal annealing to tuned bandgap greater than given bandgap.
Abstract:
A semiconductor optical amplifier (SOA) apparatus and related methods are described. The SOA comprises a signal waveguide for guiding an optical signal along a signal path, and further comprises one or more laser cavities having a gain medium lying outside the signal waveguide, the gain medium being sufficiently close to the signal waveguide such that, when the gain medium is pumped with an excitation current, the optical signal traveling down the signal waveguide is amplified by an evanescent coupling effect with the laser cavity. When the gain medium is sufficiently pumped to cause lasing action in the laser cavity, gain-clamped amplification of the optical signal is achieved. Additional features relating to segmented laser cavities, separate pumping of laser cavity segments, DFB/DBR gratings, current profiling to improve ASE noise performance, coupled-cavity lasers, avoidance of injection locking effects, manipulation of gain curve peaks, integration with a tunable vertical cavity coupler, integration with a photodetector, integration with an RZ signal modulator, and other described features may be used with the evanescent coupling case or with an SOA having a laser cavity gain medium that is coextensive with the gain medium of the signal waveguide.
Abstract:
Disclosed are semiconductor laser devices which hardly have degradation when used to generate high power of 200 mW or greater over a long period of time. An exemplary semiconductor laser device comprising a semiconductor substrate, and a layer structure formed on the semiconductor substrate and having an active layer with a quantum well layer formed of a ternary system mixed crystal of a III-V compound semiconductor. The material of the quantum well layer is formed in an equilibrium phase which is thermodynamically stable at both the growth temperature and the operating temperature. The material preferably has a substantially homogeneous disordered microstructure. In a preferred embodiment, the material comprises GaAsSb. The quantum well layer exhibits improved thermodynamic stability, and the device can emit light in the 980 nm band at high power levels for longer periods of time without failure in comparison to conventional InGaAs 980 nm pumping lasers.
Abstract:
A process for shifting the bandgap energy of a quantum well layer (e.g., a III-V semiconductor quantum well layer) without inducing complex crystal defects or generating significant free carriers. The process includes introducing ions (e.g., deep-level ion species) into a quantum well structure at an elevated temperature, for example, in the range of from about 200° C. to about 700° C. The quantum well structure that has had ions introduced therein includes an upper barrier layer, a lower barrier layer and a quantum well layer. The quantum well layer is disposed between the upper barrier layer and the lower barrier layer. The quantum well structure is then thermally annealed, thereby inducing quantum well intermixing (QWI) in the quantum well structure and shifting the bandgap energy of the quantum well layer. Also, a photonic device assembly that includes a plurality of operably coupled photonic devices monolithically integrated on a single substrate using the process described above.
Abstract:
A semiconductor laser device improves reliability during high-power oscillation. An n-type GaAs buffer layer, an n-type In0.48Ga0.52P lower cladding layer, an n-type or i-type Inx1Ga1−x1As1−y1Py1 optical waveguide layer, an i-type GaAs1−y2Py2 tensile-strain barrier layer, an Inx3Ga1−3As1−y3Py3 compressive-strain quantum-well active layer, an i-type GaAs1−y2Py2 tensile-strain barrier layer, a p-type or i-type Inx1Ga1−x1As1−y1Py1 upper optical waveguide layer, a p-type In0.48Ga0.52P first upper cladding layer, a GaAs etching stop layer, a p-type In0.48Ga0.52P second upper cladding layer, and a p-type GaAs contact layer are grown on a plane of an n-type GaAs substrate. Two ridge trenches are formed on the resultant structure, and current non-injection regions are formed by removing the p-type GaAs contact layer in portions extending inwardly by 30 &mgr;m from cleavage positions of edge facets of the resonator on a top face of a ridge portion between the ridge trenches.
Abstract:
A method of manufacturing an optical device, wherein the device body portion from which the device is to be made includes at least one Quantum Well, the method including the step of causing an impurity material including copper to intermix with the Quantum Well.