MULTIQUANTUM WELL STRUCTURES FOR SUPPRESSION OF ELECTRON LEAKAGE AND REDUCTION OF THRESHOLD-CURRENT DENSITY IN QUANTUM CASCADE LASERS
    4.
    发明申请
    MULTIQUANTUM WELL STRUCTURES FOR SUPPRESSION OF ELECTRON LEAKAGE AND REDUCTION OF THRESHOLD-CURRENT DENSITY IN QUANTUM CASCADE LASERS 有权
    用于抑制电子泄漏和减少量子级激光器中阈值电流密度的多晶体结构

    公开(公告)号:US20140247850A1

    公开(公告)日:2014-09-04

    申请号:US13591645

    申请日:2012-08-22

    Abstract: Semiconductor structures for laser devices are provided. The semiconductor structures have a quantum cascade laser structure comprising an electron injector, an active region, and an electron extractor. The active region comprises an injection barrier, a multiquantum well structure, and an exit barrier. The multiquantum well structure can comprise a first barrier, a first quantum well, a second barrier, a second quantum well, and a third barrier. The energies of the first and second barrier are less than the energy of the third barrier. The energy difference between the energy of the second barrier and the energy of the third barrier can be greater than 150 meV and the ratio of the energy of the third barrier to the energy of the second barrier can be greater than 1.26.

    Abstract translation: 提供了激光器件的半导体结构。 半导体结构具有包括电子注入器,有源区和电子提取器的量子级联激光器结构。 活性区域包括注入阻挡层,多量子阱结构和出口屏障。 多量子阱结构可以包括第一势垒,第一量子阱,第二势垒,第二量子阱和第三势垒。 第一和第二屏障的能量小于第三屏障的能量。 第二阻挡层的能量与第三阻挡层的能量之间的能量差可以大于150meV,并且第三阻挡层的能量与第二阻挡层的能量的比率可以大于1.26。

    Spatial bandgap modifications and energy shift of semiconductor structures
    5.
    发明授权
    Spatial bandgap modifications and energy shift of semiconductor structures 有权
    半导体结构的空间带隙修改和能量偏移

    公开(公告)号:US07344905B2

    公开(公告)日:2008-03-18

    申请号:US10824838

    申请日:2004-04-15

    Abstract: Semiconductor substrate is disclosed having quantum wells having first bandgap, and quantum wells having second bandgap less than second bandgap. Semiconductor structure is disclosed comprising substrate having quantum wells having given bandgap, other quantum wells modified to bandgap greater than given bandgap. Semiconductor substrate is disclosed comprising wafer having quantum wells, section of first bandgap, and section of second bandgap greater than first bandgap. Method for forming semiconductor substrate is provided, comprising providing wafer having given bandgap, depositing dielectric cap on portion and rapid thermal annealing to tuned bandgap greater than given bandgap. Semiconductor structure is disclosed comprising substrate having quantum wells modified by depositing cap and rapid thermal annealing to tuned bandgap greater than given bandgap. Method for forming semiconductor substrate is disclosed, comprising providing wafer having quantum wells having given bandgap, depositing cap on portion and rapid thermal annealing to tuned bandgap greater than given bandgap.

    Abstract translation: 公开了具有量子阱具有第一带隙的半导体衬底,以及具有小于第二带隙的第二带隙的量子阱。 公开了半导体结构,其包括具有给定带隙的量子阱的衬底,其他量子阱被修改为具有大于给定带隙的带隙。 公开了半导体衬底,其包括具有量子阱的晶片,第一带隙的截面以及大于第一带隙的第二带隙的截面。 提供了形成半导体衬底的方法,其包括提供具有给定带隙的晶片,在部分上沉积介电帽和快速热退火至大于给定带隙的调谐带隙。 公开了半导体结构,其包括具有通过沉积帽和快速热退火而修改的量子阱的衬底,所述量子阱具有大于给定带隙的调谐带隙。 公开了一种用于形成半导体衬底的方法,其包括提供具有给定带隙的量子阱的晶片,将部分上的沉积帽和快速热退火至大于给定带隙的调谐带隙。

    Semiconductor optical amplifier using laser cavity energy to amplify signal and method of fabrication thereof
    6.
    发明授权
    Semiconductor optical amplifier using laser cavity energy to amplify signal and method of fabrication thereof 失效
    使用激光腔能量放大信号的半导体光放大器及其制造方法

    公开(公告)号:US07265898B2

    公开(公告)日:2007-09-04

    申请号:US11024319

    申请日:2004-12-27

    Abstract: A semiconductor optical amplifier (SOA) apparatus and related methods are described. The SOA comprises a signal waveguide for guiding an optical signal along a signal path, and further comprises one or more laser cavities having a gain medium lying outside the signal waveguide, the gain medium being sufficiently close to the signal waveguide such that, when the gain medium is pumped with an excitation current, the optical signal traveling down the signal waveguide is amplified by an evanescent coupling effect with the laser cavity. When the gain medium is sufficiently pumped to cause lasing action in the laser cavity, gain-clamped amplification of the optical signal is achieved. Additional features relating to segmented laser cavities, separate pumping of laser cavity segments, DFB/DBR gratings, current profiling to improve ASE noise performance, coupled-cavity lasers, avoidance of injection locking effects, manipulation of gain curve peaks, integration with a tunable vertical cavity coupler, integration with a photodetector, integration with an RZ signal modulator, and other described features may be used with the evanescent coupling case or with an SOA having a laser cavity gain medium that is coextensive with the gain medium of the signal waveguide.

    Abstract translation: 描述了一种半导体光放大器(SOA)装置及相关方法。 SOA包括用于沿着信号路径引导光信号的信号波导,并且还包括一个或多个具有位于信号波导外部的增益介质的激光腔,增益介质足够靠近信号波导,使得当增益 介质用激励电流泵浦,沿信号波导下行的光信号通过与激光腔的ev逝耦合效应放大。 当增益介质被充分泵送以在激光腔中引起激光作用时,实现光信号的增益钳位放大。 与分段激光腔相关的附加特征,激光腔段的独立泵浦,DFB / DBR光栅,电流分析以改善ASE噪声性能,耦合腔激光器,避免注入锁定效应,操纵增益曲线峰值,与可调谐垂直线 空腔耦合器,与光电检测器的集成,与RZ信号调制器的集成以及其它所描述的特征可以与ev逝耦合壳体或具有与信号波导的增益介质共同延伸的激光腔增益介质的SOA一起使用。

    Semiconductor laser device
    7.
    发明授权
    Semiconductor laser device 失效
    半导体激光器件

    公开(公告)号:US06898224B2

    公开(公告)日:2005-05-24

    申请号:US10219093

    申请日:2002-08-13

    Abstract: Disclosed are semiconductor laser devices which hardly have degradation when used to generate high power of 200 mW or greater over a long period of time. An exemplary semiconductor laser device comprising a semiconductor substrate, and a layer structure formed on the semiconductor substrate and having an active layer with a quantum well layer formed of a ternary system mixed crystal of a III-V compound semiconductor. The material of the quantum well layer is formed in an equilibrium phase which is thermodynamically stable at both the growth temperature and the operating temperature. The material preferably has a substantially homogeneous disordered microstructure. In a preferred embodiment, the material comprises GaAsSb. The quantum well layer exhibits improved thermodynamic stability, and the device can emit light in the 980 nm band at high power levels for longer periods of time without failure in comparison to conventional InGaAs 980 nm pumping lasers.

    Abstract translation: 公开了当用于在长时间内产生200mW或更大的大功率时几乎不劣化的半导体激光器件。 一种示例性的半导体激光器件,包括半导体衬底和形成在半导体衬底上并且具有由III-V族化合物半导体的三元系混合晶形成的量子阱层的有源层的层结构。 量子阱层的材料形成在平衡相,在生长温度和工作温度下都是热力学稳定的。 该材料优选具有基本均匀的无序微结构。 在优选实施例中,该材料包括GaAsSb。 量子阱层表现出改进的热力学稳定性,器件可以在高功率水平下在980nm波段内发射较长时间的光,而与常规的InGaAs 980nm泵浦激光器相比,可以不发生故障。

    Method for shifting the bandgap energy of a quantum well layer
    8.
    发明授权
    Method for shifting the bandgap energy of a quantum well layer 失效
    移动量子阱层带隙能量的方法

    公开(公告)号:US06878562B2

    公开(公告)日:2005-04-12

    申请号:US09916701

    申请日:2001-07-26

    Abstract: A process for shifting the bandgap energy of a quantum well layer (e.g., a III-V semiconductor quantum well layer) without inducing complex crystal defects or generating significant free carriers. The process includes introducing ions (e.g., deep-level ion species) into a quantum well structure at an elevated temperature, for example, in the range of from about 200° C. to about 700° C. The quantum well structure that has had ions introduced therein includes an upper barrier layer, a lower barrier layer and a quantum well layer. The quantum well layer is disposed between the upper barrier layer and the lower barrier layer. The quantum well structure is then thermally annealed, thereby inducing quantum well intermixing (QWI) in the quantum well structure and shifting the bandgap energy of the quantum well layer. Also, a photonic device assembly that includes a plurality of operably coupled photonic devices monolithically integrated on a single substrate using the process described above.

    Abstract translation: 用于移动量子阱层(例如,III-V半导体量子阱层)的带隙能量而不引起复杂晶体缺陷或产生显着的自由载流子的方法。 该方法包括在升高的温度例如约200℃至约700℃的范围内将离子(例如,深层离子物质)引入量子阱结构中。已经存在的量子阱结构 在其中引入的离子包括上阻挡层,下势垒层和量子阱层。 量子阱层设置在上阻挡层和下阻挡层之间。 然后量子阱结构被热退火,从而在量子阱结构中引起量子阱混合(QWI)并且移动量子阱层的带隙能量。 此外,光子器件组件包括使用上述方法将单个集成在单个衬底上的多个可操作耦合的光子器件组合在一起。

    Semiconductor laser device
    9.
    发明授权
    Semiconductor laser device 失效
    半导体激光器件

    公开(公告)号:US06744797B2

    公开(公告)日:2004-06-01

    申请号:US10114059

    申请日:2002-04-03

    CPC classification number: B82Y20/00 H01S5/16 H01S5/3413 H01S5/34386

    Abstract: A semiconductor laser device improves reliability during high-power oscillation. An n-type GaAs buffer layer, an n-type In0.48Ga0.52P lower cladding layer, an n-type or i-type Inx1Ga1−x1As1−y1Py1 optical waveguide layer, an i-type GaAs1−y2Py2 tensile-strain barrier layer, an Inx3Ga1−3As1−y3Py3 compressive-strain quantum-well active layer, an i-type GaAs1−y2Py2 tensile-strain barrier layer, a p-type or i-type Inx1Ga1−x1As1−y1Py1 upper optical waveguide layer, a p-type In0.48Ga0.52P first upper cladding layer, a GaAs etching stop layer, a p-type In0.48Ga0.52P second upper cladding layer, and a p-type GaAs contact layer are grown on a plane of an n-type GaAs substrate. Two ridge trenches are formed on the resultant structure, and current non-injection regions are formed by removing the p-type GaAs contact layer in portions extending inwardly by 30 &mgr;m from cleavage positions of edge facets of the resonator on a top face of a ridge portion between the ridge trenches.

    Abstract translation: 半导体激光器件在高功率振荡期间提高了可靠性。 n型GaAs缓冲层,n型In0.48Ga0.52P下包层,n型或i型Inx1Ga1-x1As1-y1Py1光波导层,i型GaAs1-y2Py2拉伸应变阻挡层 Inx3Ga1-3As1-y3Py3压缩应变量子阱有源层,i型GaAs1-y2Py2拉伸应变势垒层,p型或i型Inx1Ga1-x1As1-y1Py1上部光波导层, 在n型GaAs的平面上生长In0.48Ga0.52P的第一上包层,GaAs蚀刻停止层,p型In0.48Ga0.52P第二上覆层和p型GaAs接触层 基质。 在所得结构上形成两个脊沟槽,并且通过从脊的顶面上的谐振器的边缘切口的切割位置向内延伸30微米的部分去除p型GaAs接触层,形成电流的非注入区域 脊沟槽之间的部分。

Patent Agency Ranking