Abstract:
A field effect transistor has an MOS structure and is formed of a nitride based compound semiconductor. The field effect transistor includes a substrate; a semiconductor operating layer having a recess and formed on the substrate; an insulating layer formed on the semiconductor operating layer including the recess; a gate electrode formed on the insulating layer at the recess; and a source electrode and a drain electrode formed on the semiconductor operating layer with the recess in between and electrically connected to the semiconductor operating layer. The recess includes a side wall inclined relative to the semiconductor operating layer.
Abstract:
A nitride-based compound semiconductor includes an atom of at least one group-III element selected from the group consisting of Al, Ga, In, and B, a nitrogen atom, and a metal atom that forms a compound by bonding with an interstitial atom of the at least one group-III element. The metal atom is preferably iron or nickel. A doping concentration of the metal atom is preferably equal to a concentration of the interstitial atom of the at least one group-III element.
Abstract:
A field effect transistor includes a high resistance layer on a substrate, a semiconductor operation layer that is formed on the high resistance layer and includes a channel layer that has the carbon concentration of not more than 1×1018 cm−3 and has the layer thickness of more than 10 nm and not more than 100 nm, a recess that is formed up to the inside of the channel layer in the semiconductor operation layer, source and drain electrodes that are formed on the semiconductor operation layer with the recess intervening therebetween, a gate insulating film that is formed on the semiconductor operation layer so as to cover the recess, and a gate electrode that is formed on the gate insulating film in the recess.
Abstract translation:场效应晶体管包括在基板上的高电阻层,形成在高电阻层上并具有碳浓度不大于1×10 18 cm -3且具有层厚度的沟道层的半导体操作层 大于10nm且不大于100nm的凹槽,形成在半导体操作层中的沟道层内部的凹部,形成在半导体操作层上的沟槽间的沟槽间的沟槽间的沟槽, 栅极绝缘膜,其形成在半导体操作层上以覆盖凹部;以及栅电极,其形成在凹部中的栅极绝缘膜上。
Abstract:
A field effect transistor formed of a semiconductor of a III group nitride compound, includes an electron running layer formed on a substrate and formed of GaN; an electron supplying layer formed on the electron running layer and formed of AlxGa1-xN (0.01≦x≦0.4), the electron supplying layer having a band gap energy different from that of the electron running layer and being separated with a recess region having a depth reaching the electron running layer; a source electrode and a drain electrode formed on the electron supplying layer with the recess region in between; a gate insulating film layer formed on the electron supplying layer for covering a surface of the electron running layer in the recess region; and a gate electrode formed on the gate insulating film layer in the recess region. The electron supplying layer has a layer thickness between 5.5 nm and 40 nm.
Abstract translation:由III族氮化物化合物的半导体形成的场效应晶体管包括形成在衬底上并由GaN形成的电子运行层; 电子供给层,形成在电子运行层上,由Al x Ga 1-x N(0.01≦̸ x≦̸ 0.4)形成,电子供给层的带隙能量与电子运行层的能隙不同,并且与具有 达到电子运行层的深度; 形成在电子供给层上的源电极和漏电极,其间具有凹陷区域; 在所述电子供给层上形成的用于覆盖所述凹部的电子运行层的表面的栅极绝缘膜层; 以及形成在所述凹部区域中的所述栅极绝缘膜层上的栅电极。 电子供给层的层厚在5.5nm至40nm之间。
Abstract:
A semiconductor electronic device comprises a substrate; a buffer layer formed on the substrate, the buffer layer including not less than two layers of composite layer in which a first semiconductor layer formed of a nitride-based compound semiconductor layer having a lattice constant smaller than a lattice constant of the substrate and a thermal expansion coefficient larger than a thermal expansion coefficient of the substrate and a second semiconductor layer formed of a nitride-based compound semiconductor having a lattice constant smaller than a lattice constant of the first semiconductor layer and a thermal expansion coefficient larger than a thermal expansion coefficient of the substrate are alternately laminated; an intermediate layer provided between the substrate and the buffer layer, the intermediate layer being formed of a nitride-based compound semiconductor having a lattice constant smaller than a lattice constant of the first semiconductor layer and a thermal expansion coefficient larger than a thermal expansion coefficient of the substrate; and a semiconductor active layer formed on the buffer layer, the semiconductor active layer being formed of a nitride-based compound semiconductor, wherein: thicknesses of the first semiconductor layers in the buffer layer are non-uniform thereamong, and at least one of the first semiconductor layer has a thickness greater than a critical thickness, the critical thickness being a thickness above which a direction of warp caused by the first semiconductor layer to the substrate is inverted.
Abstract:
A field effect transistor includes: a buffer layer that is formed on a substrate; a high resistance layer or a foundation layer that is formed on the buffer layer; a carbon-containing carrier concentration controlling layer that is formed on the high resistance layer or the foundation layer; a carrier traveling layer that is formed on the carrier concentration controlling layer; a carrier supplying layer that is formed on the carrier traveling layer; a recess that is formed from the carrier supplying layer up to a predetermined depth; source/drain electrodes that are formed on the carrier supplying layer with the recess intervening therebetween; a gate insulating film that is formed on the carrier supplying layer so as to cover the recess; and a gate electrode that is formed on the gate insulating film in the recess.
Abstract:
Provided is a nitride semiconductor device comprising a base substrate; a buffer layer formed above the base substrate; an active layer formed on the buffer layer; and at least two electrodes formed above the active layer. The buffer layer includes one or more composite layers that each have a plurality of nitride semiconductor layers with different lattice constants, and at least one of the one or more composite layers is doped with carbon atoms and oxygen atoms in at least a portion of a carrier region of the nitride semiconductor having the largest lattice constant among the plurality of nitride semiconductor layers, the carrier region being a region in which carriers are generated due to the difference in lattice constants between this nitride semiconductor layer and the nitride semiconductor layer formed directly thereon.
Abstract:
A semiconductor electronic device comprises a substrate; a buffer layer formed on said substrate, having two or more layers of composite layers in which a first semiconductor layer comprising nitride based compound semiconductor having smaller lattice constant and greater coefficient of thermal expansion than the substrate and a second semiconductor layer comprising nitride based compound semiconductor having smaller lattice constant and smaller coefficient of thermal expansion than the first semiconductor layer are alternately laminated; a semiconductor operating layer comprising nitride based compound semiconductor formed on said buffer layer; a dislocation reducing layer comprising nitride based compound semiconductor, formed in a location between a location directly under said buffer layer and inner area of said semiconductor operating layer, and comprising a lower layer area and an upper layer area each having an uneven boundary surface, wherein threading dislocation extending from the lower layer area to the upper layer area is bent at said boundary surface.
Abstract:
A semiconductor electronic device comprises a substrate; a buffer layer formed on the substrate, the buffer layer including not less than two layers of composite layer in which a first semiconductor layer formed of a nitride-based compound semiconductor layer having a lattice constant smaller than a lattice constant of the substrate and a thermal expansion coefficient larger than a thermal expansion coefficient of the substrate and a second semiconductor layer formed of a nitride-based compound semiconductor having a lattice constant smaller than a lattice constant of the first semiconductor layer and a thermal expansion coefficient larger than a thermal expansion coefficient of the substrate are alternately laminated; an intermediate layer provided between the substrate and the buffer layer, the intermediate layer being formed of a nitride-based compound semiconductor having a lattice constant smaller than a lattice constant of the first semiconductor layer and a thermal expansion coefficient larger than a thermal expansion coefficient of the substrate; and a semiconductor active layer formed on the buffer layer, the semiconductor active layer being formed of a nitride-based compound semiconductor, wherein: thicknesses of the first semiconductor layers in the buffer layer are non-uniform thereamong, and at least one of the first semiconductor layer has a thickness greater than a critical thickness, the critical thickness being a thickness above which a direction of warp caused by the first semiconductor layer to the substrate is inverted.
Abstract:
Disclosed are semiconductor laser devices which hardly have degradation when used to generate high power of 200 mW or greater over a long period of time. An exemplary semiconductor laser device comprising a semiconductor substrate, and a layer structure formed on the semiconductor substrate and having an active layer with a quantum well layer formed of a ternary system mixed crystal of a III-V compound semiconductor. The material of the quantum well layer is formed in an equilibrium phase which is thermodynamically stable at both the growth temperature and the operating temperature. The material preferably has a substantially homogeneous disordered microstructure. In a preferred embodiment, the material comprises GaAsSb. The quantum well layer exhibits improved thermodynamic stability, and the device can emit light in the 980 nm band at high power levels for longer periods of time without failure in comparison to conventional InGaAs 980 nm pumping lasers.