Abstract:
Semiconductor structures for laser devices are provided. The semiconductor structures have a quantum cascade laser structure comprising an electron injector, an active region, and an electron extractor. The active region comprises an injection barrier, a multiquantum well structure, and an exit barrier. The multiquantum well structure can comprise a first barrier, a first quantum well, a second barrier, a second quantum well, and a third barrier. The energies of the first and second barrier are less than the energy of the third barrier. The energy difference between the energy of the second barrier and the energy of the third barrier can be greater than 150 meV and the ratio of the energy of the third barrier to the energy of the second barrier can be greater than 1.26.
Abstract:
A quantum well optoelectronic device exploiting the multistability of the light-current characteristic of a multiple quantum well structure to achieve complex manipulation of the optical output of a light-emitting channel. Intraband tunneling of each of two distinct carrier types gives rise to a nonlinear dependence of optical gain on injected current.
Abstract:
A semiconductor laser that selectively performs oscillations in different polarization modes has first and second laser regions on a substrate. The first laser region exhibits a gain spectrum in which one polarization mode is dominant and the second laser region exhibits a gain spectrum in which a different polarization mode is dominant. Current injected independently into the each laser region causes polarization mode oscillation competition. One of the different polarization mode oscillations is selected by, for example, injecting a minute modulated current into at least one of the first and second laser regions.
Abstract:
A quantum cascade laser is configured so as to include a semiconductor substrate and an active layer which is provided on the substrate and has a cascade structure including multistage-laminated unit laminate structures 16 each including a quantum well emission layer 17 and an injection layer 18. Moreover, the unit laminate structure 16 has, in its subband level structure, an emission upper level 3, a lower level 2, and an injection level 4 of higher energy than the upper level 3, and light hv is generated by intersubband transition of electrons from the level 3 to the level 2 in the emission layer 17, and electrons after emission transition are injected into the injection level 4 of the subsequent stage via the injection layer 18. In addition, the emission layer 17 includes two or more well layers, and the first well layer closest to the injection layer of the preceding stage is used as a well layer for injection level formation. Accordingly, a quantum cascade laser capable of operation with high efficiency at high temperature can be realized.
Abstract:
The amplifier according to the invention comprises a shallow, narrow well (P1) in which amplification takes place and a deep, wide well (P2) for collecting the carriers at the end of excitation, said well being emptied by the laser effect.Application to optical telecommunications.
Abstract:
In a semiconductor laser device for emitting a laser beam of a variable frequency depending on a current applied to the laser device, there are provided a semiconductor substrate, an optical waveguide structure formed on the substrate having two or more semiconductor light emission layers and barrier layers having a wider band gap then that of the light emission layers, alternately stacked, clad layers stacked on the opposite sides of the waveguide structure and having a lower refractive index than that of the waveguide structure, and a device for applying a current to the light emission layers, and the wave guide structure includes at least first and the second light emission layers which respectively emit lights having different wavelengths.
Abstract:
Infrared generation is disclosed. A first laser field having a first frequency associated with a first interband transition is generated. A second laser field having a second frequency associated with a second interband transition is generated. The generation of the first laser field occurs substantially simultaneously with the generation of the second laser field. A third laser field is generated from the first laser field and the second laser field. The third laser field has a third frequency associated with an intersubband transition. The third frequency is substantially equivalent to a difference between the second frequency and the first frequency.
Abstract:
A semiconductor optical filter that includes a semiconductor substrate and a laser structure formed on the substrate. The laser structure includes an active layer of a quantum well structure and a grating formed along the active layer. The active layer is constructed to have a ground state level and an energy level other than the ground state level. A saturation gain of the ground state level is set to a value less than an internal loss, and the other energy level is set to permit an increase in the amount of carriers injected into the laser structure. The laser structure is typically a distributed feedback type laser structure. Anti-reflection coatings may be formed on the end surfaces of the laser structure.
Abstract:
A semiconductor laser device includes a semiconductor laser element having a quantum well structure active layer having n levels of quantum states (n
Abstract:
A semiconductor laser element of which oscillation wavelength is variable at a wide range has a high operative efficiency. It comprises a substrate; a first light emitting layer provided on said substrate and including a resonance cavity, said first light emitting layer permitting the ground energy level and at least one high-order energy level; a second light emitting layer provided on said substrate and including a resonance cavity, said second light emitting layer permitting at least the ground energy level, the band gap of the ground energy level of said second light emitting layer being wider than that of the ground energy level of said first light emitting layer, and one of the band gaps of the high-order energy levels of the first light emitting layer being substantially equal to the band gap of the ground energy level of the second light emitting layer; a barrier layer disposed between said first light emitting layer and said second light emitting layer, said barrier layer having its band gap wider than those of said first and second light emitting layers; a pair of clad layers sandwiching therebetween said barrier layer and said first and second light emitting layers, said clad layers having lower refractive index than those of said first and second light emitting layers; and electrode means for injecting carrier into said first and second light emitting layers. Also disclosed is a driving method for the semiconductor laser element.