Abstract:
A semiconductor laser apparatus is provided and has a substrate, a first type cladding layer, a first type waveguide layer, an active layer, a second type waveguide layer, a second type cladding layer, and a capping layer disposed in sequence. The active layer has a light producing portion and a light emitting portion. A laser produced by the light producing portion, emits along a direction from the light producing portion toward the light emitting portion. The light emitting portion includes a first inactive region, a light emitting region, and a second inactive region. A refractive index of the light emitting region is lower than a refractive index of the first inactive region, the refractive index of the light emitting region is lower than a refractive index of the second inactive region, and width of a first part of the light emitting region continuously increases along the direction.
Abstract:
A semiconductor device includes: a semiconductor layered structure including an active layer, a first region including a part of the active layer and extending in a layered direction, a second region including at least a part of an end portion of the active layer and extending in the layered direction, disordering of the second region being higher than the first region, and a third region including a portion of the active layer between the first region and the second region and extending in the layered direction, disordering of the third region being higher than the first region and lower than the second region; and an electrode configured to inject an electric current to the active layer.
Abstract:
A semiconductor laser element includes a substrate of a first conduction type and a layered semiconductor structure formed on the substrate. The layered semiconductor structure includes a first semiconductor layer of the first conduction type formed on the substrate, an active layer formed on the first semiconductor layer, and a second semiconductor layer of a second conduction type formed on the active layer, the second conduction type being opposite to the first conduction type. The first semiconductor layer, the active layer, and the second semiconductor layer include a non-window region through which a light emitted from the active layer passes and a window region surrounding the non-window region. Band gap energy of the active layer is larger in the window region than in the non-window region. The second semiconductor layer includes a current confinement layer.
Abstract:
A laser device includes a substrate, a lower cladding layer on the substrate, an active layer on the lower cladding layer and having a disordered portion spaced from an end face of a resonator of the laser device, an upper cladding layer located on the active layer, and a diffraction grating located in a portion of a layer lying above or below the active layer, with respect to the substrate. The disordered portion intersects a boundary between a diffraction grating section, in which the diffraction grating is located, and a bulk section, in which no diffraction grating is located.
Abstract:
A semiconductor laser element includes a substrate of a first conduction type and a layered semiconductor structure formed on the substrate. The layered semiconductor structure includes a first semiconductor layer of the first conduction type formed on the substrate, an active layer formed on the first semiconductor layer, and a second semiconductor layer of a second conduction type formed on the active layer, the second conduction type being opposite to the first conduction type. The first semiconductor layer, the active layer, and the second semiconductor layer include a non-window region through which a light emitted from the active layer passes and a window region surrounding the non-window region. Band gap energy of the active layer is larger in the window region than in the non-window region. The second semiconductor layer includes a current confinement layer.
Abstract:
An edge emitting semiconductor laser includes a semiconductor body, which has a waveguide region. The waveguide region has an active layer for generating laser radiation. The active layer is arranged between a first waveguide layer and a second waveguide layer. The waveguide region is arranged between a first cladding layer and a second cladding layer. The semiconductor body has a main region and at least one phase structure region in which is formed a phase structure for the selection of lateral modes of the laser radiation emitted by the active layer. The phase structure region is arranged outside the waveguide region or formed by a region in which a dopant is introduced or an intermixing structure is produced.
Abstract:
An edge emitting semiconductor laser includes a semiconductor body, which has a waveguide region. The waveguide region has an active layer for generating laser radiation. The active layer is arranged between a first waveguide layer and a second waveguide layer. The waveguide region is arranged between a first cladding layer and a second cladding layer. The semiconductor body has a main region and at least one phase structure region in which is formed a phase structure for the selection of lateral modes of the laser radiation emitted by the active layer. The phase structure region is arranged outside the waveguide region or formed by a region in which a dopant is introduced or an intermixing structure is produced.
Abstract:
A nitride semiconductor device includes: a semiconductor substrate; a p-type semiconductor layer formed over the semiconductor substrate, made of a nitride semiconductor, and containing first impurities; and an insulating film contacting the p-type semiconductor layer and having an impurity region containing second impurities for trapping hydrogen. Since residual hydrogen in the p-type semiconductor layer is trapped in the impurity region, the hydrogen concentration in the impurity region is higher than that in the insulating film excluding the impurity region.
Abstract:
An integrated tapered diode laser arrangement comprises an injector region (2) and a region (3) which is optically coupled to the injector region and expands in a cross section. At least one of said regions (2, 3) has a quantum well structure with a plurality of semiconductor materials, wherein the semiconductor materials are intermixed at least in one region (21, 31). The intermixed region (21, 31) has a larger electrical band gap than a non-intermixed region.
Abstract:
A method of avoiding device failure caused by facet heating is described. The method is particularly applicable to a semiconductor laser. In the method, a semiconductor laser facet including GaAsN is hydrogenated such that the bandgap within the facet is greater than the bandgap in the active region of the InGaAsN laser. The increased bandgap reduces absorption of light in the facet and the associated heating that results.