Abstract:
A bonding tool for bonding two conductive plates in contact with each other by pressing the bonding tool against the two conductive plates while vibrating a bonding end portion thereof in a direction parallel to the conductive plates. The bonding end portion of the bonding tool includes a bonding base having an end surface, the end surface having a protrusion area that has two sides facing and parallel to each other in a first direction that is parallel to the end surface, a plurality of protrusions provided in the protrusion area of the end surface, and a suppression portion provided on the end surface along the two sides of the protrusion area. The bonding end portion is configured to vibrate in the first direction.
Abstract:
A multi-chip stack structure and a method for fabricating the same are provided. The method for fabricating a multi-chip stack structure includes disposing a first chip group comprising a plurality of first chips on a chip carrier by using a step-like manner, disposing a second chip on the first chip on top of the first chip group, electrically connecting the first chip group and the second chip to the chip carrier through bonding wires, using film over wire (FOW) to stack a third chip on the first and the second chips with an insulative film provided therebetween, wherein the insulative film covers part of the ends of the bonding wires of the first chip on the top of the first group and at least part of the second chip, and electrically connecting the third chip to the chip carrier through bonding wires, thereby preventing directly disposing on a first chip a second chip having a planar size far smaller than that of the first chip as in the prior art that increases height of the entire structure and increases the wiring bonding difficultly.
Abstract:
A method for forming a sheathed wire includes the steps of: axially advancing a core through a sheathing zone; wrapping a sheathing fiber around the core in the sheathing zone; and providing, in the sheathing zone, a series of microelectronic chip elements each provided with a wire section, in such a way that the sheathing fiber that wraps around the core also wraps around a chip element and the wire section thereof to form a sheathed wire incorporating spaced-apart chip elements.
Abstract:
A method for assembling a device on two substantially parallel taut threads. The device includes an electronic chip and two substantially parallel grooves open on opposite sides of the device. The distance separating the grooves corresponds to the distance separating the threads. The device presents a penetrating shape along an axis perpendicular to the plane of the grooves, having a base at the level of the grooves and an apex of smaller size than the distance separating the threads. The method includes the steps consisting in placing the apex of the device between the two threads; in moving the device between the two threads resulting in the threads being separated from one another by the penetrating shape of the device; and in continuing movement of the device until the threads penetrate into the grooves reverting to their initial separation distance.
Abstract:
In one embodiment, a chip-on-lead package structures includes an electronic chip having opposing major surfaces. One major surface of the electronic chip is attached to first and second leads. The one major surface is electrically connected to the first lead, and electrically isolated from the second lead. The other major surface where active device are formed may be electrically connected to the second lead.
Abstract:
The present invention relates to a method to attach a shape memory alloy wire to a substrate, where the wire is mechanically attached into a 3D structure on the substrate. The present invention also relates to a device comprising a shape memory alloy wire attached to a substrate, where the wire is mechanically attached into a 3D structure on the substrate.
Abstract:
An article of manufacture includes a semiconductor die (110) having an integrated circuit (105) on a first side of the die (110), a diffusion barrier (125) on a second side of the die (110) opposite the first side, a mat of carbon nanotubes (112) rooted to the diffusion barrier (125), a die attach adhesive (115) forming an integral mass with the mat (112) of the carbon nanotubes, and a die pad (120) adhering to the die attach adhesive and (115) and the mat (112) of carbon nanotubes for at least some thermal transfer between the die (110) and the die pad (120) via the carbon nanotubes (112). Other articles, integrated circuit devices, structures, and processes of manufacture, and assembly processes are also disclosed.
Abstract:
Integrated circuits having copper bonding structures with silicon carbon nitride passivation layers and methods for making the same are provided. In an exemplary embodiment, an integrated circuit includes a substrate and a copper bonding structure having a contact surface. The copper bonding structure overlies the substrate. A passivation layer formed of silicon carbon nitride is disposed on the contact surface.
Abstract:
Integrated circuits having copper bonding structures with silicon carbon nitride passivation layers and methods for making the same are provided. In an exemplary embodiment, an integrated circuit includes a substrate and a copper bonding structure having a contact surface. The copper bonding structure overlies the substrate. A passivation layer formed of silicon carbon nitride is disposed on the contact surface.
Abstract:
A method for forming a sheathed wire includes the steps of axially advancing a core through a sheathing zone; wrapping a sheathing fiber around the core in the sheathing zone; and providing, in the sheathing zone, a series of microelectronic chip elements each provided with a wire section, in such a way that the sheathing fiber that wraps around the core also wraps around a chip element and the wire section thereof to form a sheathed wire incorporating spaced-apart chip elements.