Abstract:
A process for manufacturing surface-mount semiconductor devices, in particular of the Quad-Flat No-Leads Multi-Row type, comprising providing a metal leadframe, in particular a copper leadframe, which includes a plurality of pads, each of which is designed to receive the body of the device, the pads being separated from adjacent pads by one or more rows of wire-bonding contacting areas, outermost rows from among the one or more rows of wire-bonding contacting areas identifying, together with outermost rows corresponding to the adjacent pads, separation regions.
Abstract:
A method of fabricating an electronic package includes providing a package comprising a leadframe and a plurality of pins and providing a gallium nitride (GaN) transistor comprising a drain contact, a source contact, and a gate contact. The method also includes joining the drain contact to the leadframe and providing a GaN diode comprising an anode contact and a cathode contact. The method further includes joining the anode contact to the leadframe.
Abstract:
A process for manufacturing surface-mount semiconductor devices, in particular of the Quad-Flat No-Leads Multi-Row type, comprising providing a metal leadframe, in particular a copper leadframe, which includes a plurality of pads, each of which is designed to receive the body of the device, the pads being separated from adjacent pads by one or more rows of wire-bonding contacting areas, outermost rows from among the one or more rows of wire-bonding contacting areas identifying, together with outermost rows corresponding to the adjacent pads, separation regions.
Abstract:
An electronic package includes a leadframe, a plurality of pins, a gallium-nitride (GaN) transistor, and a GaN diode. The GaN transistor includes a drain region, a drift region, a source region, and a gate region; the drain region includes a GaN substrate and a drain contact, the drift region includes a first GaN epitaxial layer coupled to the GaN substrate, the source region includes a source contact and is separated from the GaN substrate by the drift region, and the gate region includes a second GaN epitaxial layer and a gate contact. The GaN diode includes an anode region and a cathode region, the cathode region including the GaN substrate and a cathode contact, and the anode region including a third GaN epitaxial layer coupled to the GaN substrate and an anode contact. The drain contact and the anode contact are electrically connected to the leadframe.
Abstract:
Methods are disclosed for mounting an electronic package to a circuit board are disclosed. The electronic package can be mounted to the circuit board by use of intermediate solder portions such that each intermediate solder portion couples a corresponding through-mold connection of the electronic package to the circuit board. The through-mold connections can have a melting point in excess of a melting point of the intermediate solder portions. Related electronic packages, electronic assemblies, electronic devices, and methods of manufacturing electronic packages are disclosed.
Abstract:
An electronic package includes a leadframe, a plurality of pins, a gallium-nitride (GaN) transistor, and a GaN diode. The GaN transistor includes a drain region, a drift region, a source region, and a gate region; the drain region includes a GaN substrate and a drain contact, the drift region includes a first GaN epitaxial layer coupled to the GaN substrate, the source region includes a source contact and is separated from the GaN substrate by the drift region, and the gate region includes a second GaN epitaxial layer and a gate contact. The GaN diode includes an anode region and a cathode region, the cathode region including the GaN substrate and a cathode contact, and the anode region including a third GaN epitaxial layer coupled to the GaN substrate and an anode contact. The drain contact and the anode contact are electrically connected to the leadframe.
Abstract:
Disclosed is a device including a first finger of a plurality of lead fingers of a lead frame connected to a first flag. A second finger of the plurality of lead fingers of the lead frame is connected to a second flag. A semiconductor die is coupled to the lead frame. An encapsulant covers the semiconductor die, the lead frame, and a first end of the plurality of lead fingers, and excludes the first flag and the second flag. The first flag and the second flag are separated and electrically isolated from one another by the encapsulant.
Abstract:
A process for manufacturing surface-mount semiconductor devices, in particular of the Quad-Flat No-Leads Multi-Row type, comprising providing a metal leadframe, in particular a copper leadframe, which includes a plurality of pads, each of which is designed to receive the body of the device, the pads being separated from adjacent pads by one or more rows of wire-bonding contacting areas, outermost rows from among the one or more rows of wire-bonding contacting areas identifying, together with outermost rows corresponding to the adjacent pads, separation regions.
Abstract:
Disclosed herein are a semiconductor package, a method of manufacturing a semiconductor package, and a stack type semiconductor package. The semiconductor package according to a preferred embodiment of the present invention includes: a base substrate on which a first circuit layer is formed; a semiconductor device formed on the base substrate; a molding part formed on the base substrate and formed to enclose the first circuit layer and the semiconductor device; a first via formed on the first circuit layer and formed to penetrate through the molding part; and a second circuit layer formed on an upper surface of the molding part and integrally formed with the first via.
Abstract:
A method includes forming a first package component and a second package component. The first package component includes a first polymer layer, and a first electrical connector, with at least a part of the first electrical connector being in the first polymer layer. The second package component comprises a second polymer layer, and a second electrical connector, with at least a part of the second electrical connector being in the second polymer layer. The first package component is bonded to the second package component, with the first polymer layer being bonded to the second polymer layer, and the first electrical connector being bonded to the second electrical connector.