摘要:
A device, such as an electroabsorption modulator, can modulate a light intensity by controllably absorbing a selectable fraction of the light. The device can include a substrate. A waveguide positioned on the substrate can guide light. An active region positioned on the waveguide can receive guided light from the waveguide, absorb a fraction of the received light, and return a complementary fraction of the received light to the waveguide. Such absorption produces heat, mostly at an input portion of the active region. The input portion of the active region can be thermally coupled to the substrate, which can dissipate heat from the input portion, and can help avoid thermal runaway of the device. The active region can be thermally isolated from the substrate away from the input portion, which can maintain a relatively low thermal mass for the active region, and can increase efficiency when heating the active region.
摘要:
Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.
摘要:
Embodiments of the present disclosure propose two methods for integrating vacancy centers (VCs) on semiconductor substrates for forming VC-based spin qubit devices. The first method is based on using a self-assembly process for integrating VC islands on a semiconductor substrate. The second method is based on using a buffer layer of a III-N semiconductor material over a semiconductor substrate, and then integrating VC islands in an insulating carbon-based material such as diamond that is either grown as a layer on the III-N buffer layer or grown in the openings formed in the III-N buffer layer. Integration of VC islands on semiconductor substrates typically used in semiconductor manufacturing according to any of these methods may provide a substantial improvement with respect to conventional approaches to building VC-based spin qubit devices and may promote wafer-scale integration of VC-based spin qubits for use in quantum computing devices.
摘要:
A semiconductor structure includes a first optical waveguide and a second optical waveguide located on a sapphire substrate. The first optical waveguide and the second optical waveguide each include a core portion of gallium nitride (GaN), and a cladding layer laterally surrounding the core portion. The cladding layer includes a material having a refractive index less than a refractive index of the sapphire substrate.
摘要:
A method for fabricating a waveguide construction is described and has steps of: providing a layered structure by: forming a first-type InGaAsP layer on a substrate, forming a first-type InP layer on the first-type InGaAsP layer, forming an active layer containing gallium on the first-type InP layer, forming a second-type InP layer on the active layer, and forming a second-type InGaAsP layer on the second-type InP layer; forming an SiO2 patterned layer having SiO2 regions and at least one channel facing toward a desired direction and formed between the SiO2 regions on the second-type InGaAsP layer; and performing a rapid thermal annealing treatment on the layered structure formed with the SiO2 patterned layer. The rapid thermal annealing treatment has a treating temperature between 720° C. and 760° C. and a treating time between 60 and 240 seconds.
摘要:
A method of forming a semiconductor structure includes forming a first optical waveguide and a second optical waveguide on a sapphire substrate. The first optical waveguide and the second optical waveguide each include a core portion of gallium nitride (GaN), and a cladding layer laterally surrounding the core portion. The cladding layer includes a material having a refractive index less than a refractive index of the sapphire substrate. The method further includes etching a portion of the cladding layer to form a microfluidic channel therein and forming a capping layer on a top surface of the first optical waveguide, the second optical waveguide and the microfluidic channel.
摘要:
A method of forming a semiconductor structure includes forming a first optical waveguide and a second optical waveguide on a sapphire substrate. The first optical waveguide and the second optical waveguide each include a core portion of gallium nitride (GaN), and a cladding layer laterally surrounding the core portion. The cladding layer includes a material having a refractive index less than a refractive index of the sapphire substrate. The method further includes etching a portion of the cladding layer to form a microfluidic channel therein and forming a capping layer on a top surface of the first optical waveguide, the second optical waveguide and the microfluidic channel.
摘要:
The invention describes an integrated photonics platform comprising a plurality of at least three vertically-stacked waveguides which enables light transfer from one waveguide of the photonic structure into another waveguide by means of controlled tunneling method. The light transfer involves at least three waveguides wherein light power flows from initial waveguide into the final waveguide whilst tunneling through the intermediate ones. As an exemplary realization of the controlled tunneling waveguide integration, the invention describes a photonic integrated structure consisting of laser guide as upper waveguide, passive guide as middle waveguide, and modulator guide as lower waveguides. Controlled tunneling is enabled by the overlapped lateral tapers formed on the same or different vertical waveguide levels. In the further embodiments, the controlled tunneling platform is modified to implement wavelength-(de)multiplexing, polarization-splitting and beam-splitting functions.
摘要:
Embodiments describe optical devices including a first waveguide, comprising a first cross-sectional area, to receive a light comprising a first optical mode, and a second waveguide, adjacent to the first waveguide, to receive a light comprising a second optical mode orthogonal to the first optical mode. The second waveguide comprises a second cross-sectional area different than the first waveguide such that an absorption/gain coefficient of the second waveguide for light comprising the second optical mode is equal to an absorption/gain coefficient of the first waveguide for light comprising the first optical mode. The optical devices may comprise modulators, photodetectors, or semiconductor optical amplifiers (SOAs).
摘要:
According to one embodiment, a semiconductor light-receiving element, includes a light-receiving part provided on a substrate and having a semiconductor multilayer structure of a circular outer shape, a optical input part formed of a peripheral portion of the semiconductor multilayer structure, and having a tapered front end, and a silicon-thin-line waveguide configured to couple light with the optical input part. The waveguide includes a linear part extending through the optical input part to an at least one area of an upper-side area and a lower-side area of the light-receiving part, and a spiral part connected to the linear part and formed in the at least one area.