Abstract:
A radiation monitoring device realizes a high measurement function. Therefore, a radiation monitoring device includes: a radiation detection unit including a phosphor that emits light by incident radiation; a photodetector that converts a single photon or a photon group having a plurality of the single photons generated by the radiation detection unit into an electric pulse signal; and an analysis unit that analyzes the electric pulse signal. The phosphor emits light based on a plurality of light emission phenomena having different decay time constants. The analysis unit includes: a signal discrimination circuit that discriminates the electric pulse signal output from the photodetector; a dose rate calculation circuit that calculates a dose rate of the radiation based on a count rate of the discriminated electric pulse signal; and an application energy calculation circuit that calculates application energy of the radiation based on a peak value of the discriminated electric pulse signal.
Abstract:
The present technology relates to a photoelectric conversion element, a measuring method of the same, a solid-state imaging device, an electronic device, and a solar cell capable of further improving a quantum efficiency in a photoelectric conversion element using a photoelectric conversion layer including an organic semiconductor material. The photoelectric conversion element includes two electrodes forming a positive electrode (11) and a negative electrode (14), at least one charge blocking layer (13, 15) arranged between the two electrodes, and a photoelectric conversion layer (12) arranged between the two electrodes. The at least one charge blocking layer is an electron blocking layer (13) or a hole blocking layer (15), and a potential of the charge blocking layer is bent. The present technology is applied to, for example, a solid-state imaging device, a solar cell, and the like having a photoelectric conversion element.
Abstract:
A detector includes a substrate including a matrix of aramid nanofibers, a distribution of nanoparticles across the matrix of aramid nanofibers, and a plurality of organic capping ligands. Each organic capping ligand of the plurality of organic capping ligands bonds a respective nanoparticle of the plurality of nanoparticles to a respective aramid nanofiber of the matrix of aramid nanofibers. The detector further includes first and second electrodes disposed along opposite sides of the substrate to capture charges generated by photons or particles incident upon the detector. Each nanoparticle of the plurality of nanoparticles has a semiconductor composition.
Abstract:
Disclosed is an electronic system for resetting the voltage of a charge-sensitive pre-amplifier having input from an X-ray detector and output to an ADC. The pre-amplifier gain is increased so that the RMS ADC noise is less than 1% of a representative digitized X-ray signal. The reset logic is configured to avoid loss of X-ray counts and to prevent the pre-amplifier output being outside the allowable input range of the ADC. Reset is initiated when the pre-amplifier output rises above an upper level, which is below the maximum allowable ADC input. Reset is also initiated when a pile-up event is detected, provided that such reset will not cause the pre-amplifier output to fall below the minimum allowable ADC input. At each reset a known amount of charge is removed from the pre-amplifier, and the reset time is continuously adjusted to ensure that the charge amount does not drift.
Abstract:
A semiconductor detector for detecting radiation comprises a first semiconductor part in which an electron and a hole are generated by incident radiation; a signal output electrode outputting a signal base on the electron or the hole; and a gettering part gettering impurities in the first semiconductor part. In addition, the semiconductor detector further comprises a second semiconductor part doped with a type of dopant impurities and having dopant impurity concentration higher than that of the first semiconductor part. The second semiconductor part is in contact with the first semiconductor part. The gettering part is in contact with the second semiconductor part and not in contact with the first semiconductor part.
Abstract:
A calibration method for a device for identifying materials using X-rays, including: a) determining at least one calibration material and, for each calibration material, at least one calibration thickness of this material, b) measuring, for each of the calibration materials and for each of the selected calibration thicknesses, attenuation or transmission coefficients for X radiation, c) calculating statistical parameters from the coefficients, d) determining or calculating, for each calibration material and for each calibration thickness, a presence probability distribution law, as a function of the statistical parameters.
Abstract:
A method for analyzing a sample by diffractometry and a diffractometer, where the diffractometer includes a collimated source, a detection collimator, and a spectrometric detector, the detection axis of the detector and the collimator form a diffraction angle with the central axis of an incident beam and an energy spectrum is established for each pixel of the detector. The measured spectra are readjusted by a change in variable that takes into account the energy of the scattered radiation and the angle of observation. The measured are combined and a check is made on the implementation of at least one multi-material criterion representative of the presence of a plurality of layers of materials and groups of pixels are formed according to the results of this check, where each group corresponds to a single layer of material and the measured spectra obtained for the pixels of the group are combined.
Abstract:
A calibration source for a gamma-ray spectrometer is provided. The calibration source comprises a scintillator body having a cavity in which a radioactive material is received. The scintillator body may be generally cuboid and the cavity may be formed by a hole drilled into the scintillator body. The radioactive material comprises a radioactive isotope having a decay transition associated with emission of a radiation particle and a gamma-ray having a known energy e.g. Na-22. A photodetector, for example a silicon photomultiplier, is optically coupled to the scintillator body and arranged to detect scintillation photons generated when radiation particles emitted from the radioactive material interact with the surrounding scintillator bod. A gating circuit is arranged to receive detection signals from the photodetector and to generate corresponding gating signals for a data acquisition circuit of an associated gamma-ray spectrometer to indicate that gamma-ray detections in the gamma-ray spectrometer occurring within a time window defined by the gating signal are associated with a decay transition in the radioactive isotope. Thus a calibration source is provided based around a simple scintillator body design. Furthermore, the radioactive material may be introduced into the scintillator body in a separate step after manufacture of the scintillator body, thereby reducing the risk of radioactive contamination during manufacture.
Abstract:
A photon counting detector and a photon counting and detecting method using the same is provided. The photon counting detector includes readout circuits configured to count photons in multi-energy radiation incident to a sensor, the photons being counted with respect to each of a plurality of energy bands of the multi-energy radiation, the readout circuits respectively corresponding to pixels of a region onto which the multi-energy radiation is irradiated, each of the readout circuits being configured to count photons in a predetermined one of the energy bands, at least one of the readout circuits being configured to count photons in at least one of energy bands other than the predetermined one of the energy bands.
Abstract:
Disclosed herein is a system for fast gain regulation in a gamma-ray spectroscopy instrument. The system includes a detector configured to generate a signal indicative of energy arriving at the detector, and a processor configured to determine one or more system performance indicators. The system also includes a controller configured to compute a first gain correction term based on one of more system performance indicators and change the device gain based on the computed first gain correction tem.