Abstract:
A fluorescence sensing compound for separately detecting and visualizing one or more monoamine neurotransmitters in cells, the fluorescence sensing compound having the following formula: wherein R1 and R2 are each independently selected from the group consisting of hydrogen, alkyl, alkylene, aryl, cycloalkyl; wherein R3 is selected from the group consisting of hydrogen, alkyl, alkylene, aryl, cycloalkyl, cyano, azido; and wherein R4 is selected from the group consisting of (CH3)2Si, O, N, S, and CH2.
Abstract:
Disclosed is an antibody which binds to paliperidone, which can be used to detect paliperidone in a sample such as in a competitive immunoassay method. The antibody can be used in a lateral flow assay device for point-of-care detection of paliperidone, including multiplex detection of aripiprazole, quetiapine, olanzapine, and risperidone/paliperidone in a single lateral flow assay device.
Abstract:
Disclosed is an antibody which binds to paliperidone, which can be used to detect paliperidone in a sample such as in a competitive immunoassay method. The antibody can be used in a lateral flow assay device for point-of-care detection of paliperidone, including multiplex detection of aripiprazole, quetiapine, olanzapine, and risperidone/paliperidone in a single lateral flow assay device.
Abstract:
Disclosed is an antibody which binds to paliperidone, which can be used to detect paliperidone in a sample such as in a competitive immunoassay method. The antibody can be used in a lateral flow assay device for point-of-care detection of paliperidone, including multiplex detection of aripiprazole, quetiapine, olanzapine, and risperidone/paliperidone in a single lateral flow assay device.
Abstract:
The present invention identified Lmx1a genes, which are expressed in dopaminergic neurons at all differentiation stages, from proliferating dopaminergic neuron progenitor cells before cell cycle exit to cells after cell cycle exit. Lmx1a expression in cells can be used as an indicator when selecting cells suitable for transplantation therapy for neurodegenerative diseases such as Parkinson's disease, and is useful as a marker for screening agents involved in the induction of dopaminergic neuron differentiation.
Abstract:
The present invention provides for diagnosis or treatment of neurological or neuropsychiatric disorders involving abnormal dopamine neurotransmission. Methods and agents are provided for modulating dopamine transporter activity and modulating dopaminergic neurotransmission. Agents of the present invention include fragments of D2 receptor or dopamine transporter (DAT) that can disrupt D2-DAT coupling.
Abstract:
The present invention provides for diagnosis or treatment of neurological or neuropsychiatric disorders involving abnormal dopamine neurotransmission. Methods and agents are provided for modulating dopamine transporter activity and modulating dopaminergic neurotransmission. Agents of the present invention include fragments of D2 receptor or dopamine transporter (DAT) that can disrupt D2-DAT coupling.
Abstract:
A method of quantifying a target non-peptidic compound having an amino group contained in one or more biological samples, which comprises a step of producing a difference in the mass of the target non-peptidic compound between samples, by using a combination of two or more kinds of stable isotopes of a compound represented by the formula (I): wherein R1, R2 and R3 are the same or different and each is hydrogen, halogen or alkyl, or a salt thereof, as a labeling compound; and a kit and the like usable for such method.
Abstract:
The present invention is directed to a method of identifying patients to be treated by dopamine agonist therapy comprising the step of analyzing a plasma or urine sample from said patient for concentrations of norepinephrine (NE), norepinephrine metabolites (NE metabolites), dopamine, dopamine metabolites, serotonin, serotonin metabolites, or fasting triglycerides, wherein one or more of: (a) NE metabolites, (b) NE/NE metabolites: dopamine/dopamine metabolites, (c) NE and serotonin, (d) NE/NE metabolites and serotonin, (e) NE and serotonin metabolites, (f) NE/NE metabolites and serotonin metabolites, or (g) NE is/are greater than about 30% over normal level; or dopamine/dopamine metabolites are less than about 30% below normal; or fasting triglycerides are greater than about 150 mg/dl and/or said patient has hypertension. The present invention is also directed to treating identified patients with dopamine agonist therapy.
Abstract:
A systematic and efficient method for establishing stable neural stem cell lines and neuronal progenitor lines is described. The resulting cell lines provide robust, simple, and reproducible cultures of human and other mammalian neurons in commercially useful mass quantities while maintaining normal karyotypes and normal neuronal phenotypes.