Abstract:
An optical measurement device according to an aspect of the present disclosure includes a universal metasurface on which light is incident, a polarization sensor configured to measure a polarization state of light passing through the universal metasurface, and a controller configured to collect a quantitative differential interference contrast (QDIC) image for the x polarization of incident light that is collected by the polarization sensor, a QDIC image for y polarization, and a quantitative relative phase (QRP) image representing a relative phase difference between the x polarization and y polarization and configured to calculate intensity, a phase or polarization information of the incident light.
Abstract:
An optical measurement device according to an aspect of the present disclosure includes a universal metasurface on which light is incident, a polarization sensor configured to measure a polarization state of light passing through the universal metasurface, and a controller configured to collect a quantitative differential interference contrast (QDIC) image for the x polarization of incident light that is collected by the polarization sensor, a QDIC image for y polarization, and a quantitative relative phase (QRP) image representing a relative phase difference between the x polarization and y polarization and configured to calculate intensity, a phase or polarization information of the incident light.
Abstract:
The disclosed apparatus may include a holding affordance that is configured to hold an optical element, a beam emitter, and a beam sensor, where the holding affordance is positioned, along a first dimension, between the beam emitter and the beam sensor; a first linear stage that supports the beam emitter and that, when actuated, moves the beam emitter along a second dimension; a first rotational stage that supports the beam emitter and that, when actuated, rotates the beam emitter in a staging plane defined by the first dimension and the second dimension; a second linear stage that supports the beam sensor and that, when actuated, moves the beam sensor along the second dimension; and a second rotational stage that supports the beam sensor and that, when actuated, rotates the beam sensor in the staging plane. Various other systems and methods are also disclosed.
Abstract:
This disclosure provides a method for preparing a precursor of a single dairy-lactone isomer, methods of preparing a single dairy-lactone isomer, and to the organoleptic uses thereof.
Abstract:
This disclosure is generally directed to systems for imaging polarization properties of optical-material samples. As one aspect, there is provided a system for precise, simultaneous imaging of both the in-plane and out-of-plane birefringence properties of sample material over a wide range of incidence angles. The spatially resolved imaging approach described here is amenable to determination of a wide range of polarimetric properties, in addition to the in-plane and out-of-plane birefringence measure discussed as a preferred embodiment.
Abstract:
An optical wavelength detecting device, the device including: a polarizer configured to transform an incident light into a polarized light; a detecting element configured to receive the polarized light and form a temperature difference or a potential difference between two points of the detecting element, wherein the detecting element comprises a carbon nanotube structure including a plurality of carbon nanotubes oriented along the same direction, and angles between a polarizing direction of the polarized light and an oriented direction of the plurality of carbon nanotubes is adjustable; a measuring device electrically connected to the detecting element and configured to measure the temperature difference or the potential difference; a data processor electrically connected to the measuring device and configured to obtain the optical wavelength by calculating and analyzing the temperature difference or the potential difference.
Abstract:
A method of calibrating a reflective focusing optics to provide a system that minimizes the effect of multiple beam reflections therewithin on polarization state reflective optics system that preferably requires the presence of both convex and a concave mirrors that have beam reflecting surfaces, the application of which achieves focusing of a beam of electromagnetic radiation onto a sample, (which can be along a locus differing from that of an input beam), with minimized effects on a polarization state of an input beam state of polarization based on adjusted angles of incidence and reflections from the various mirrors involved.
Abstract:
Techniques described herein generally relate to a refractometer. Using electromagnetic energy, the refractometer can accurately measure refractive index of a liquid without bulky precision optics. By empirically determining a relationship between the refractive index of a liquid sample and a measured reflected power from a resonant structure when in contact with the liquid sample, the refractive index of a liquid can be determined by measuring this reflected power. Furthermore, using multiple light sources of different frequencies, the refractive index of the liquid sample can be determined over a very broad spectral range, for example from ultra-violet to far infrared.
Abstract:
An optical system comprising a randomizer that has a plurality of randomly positioned scatterers for scattering and thereby randomizing light to generate a speckle pattern and a detector for detecting the speckle pattern to determine at least one property of the light and/or change in at least one property of the light.
Abstract:
A variety of toy polariscopes are simpler in design and less costly than precision instruments used in scientific research and stress analysis of materials and structures. The toy polariscopes are designed for a variety of objects that may exhibit photoelastic properties such as glass, plastic, Plexiglas, gel candle material and other gels, and even edible photoelastic objects. They are specially designed for objects of various sizes with a variety of purposes such as objects to enhance learning in a variety of conditions and experiences. Special objects are designed to go with the toy polariscopes such as edible and inedible photoelastic objects, photoelastic candle material, a variety of photoelastic/photoplastic stands capable of a variety of displays in interaction with other designed photoelastic objects capable of a variety of interaction and displays. Other optical phenomena may also be observed.