Abstract:
A solar collector absorption cooling system with a primary cooling circuit the evaporator (1) of which is connected with absorber ducts (26) in an absorber formed as a solar collector (12), said absorber ducts (26) including a coolant absorbing compound for the suction of coolant at night hours, and a secondary self-circulating cooling circuit with evaporator tubes (29) located in heat transferring contact with the absorber ducts (26) of the primary circuit to provide an enhanced cooling thereof. The absorber of the primary circuit is carried out as at least one sheet welded absorber panel (24, 25) and is accommodated in a solar collector frame (12) beneath and in parallel to a glass layer (15) facing the incident sun and to a thermal insulating layer (36) on the opposite side of the absorber panel. The evaporator tubes (b 29) of the secondary circuit that are made from well heat-conducting material are positioned in the valleys between the ducts (26) of the absorber panel (24, 25) facing the insulating layer (36).
Abstract:
The invention relates to an absorption plate, in particular of an absorption air conditioner for a vehicle, crossed by a stream of liquid absorbent fluid (10) flowing between two exchange surfaces (35) arranged relatively opposite one another, the exofhermal absorption of a so-called coolant fluid in vapour phase taking place through said exchange surfaces (35) by increasing a concentration of the coolant fluid in the absorbent fluid (10), characterised in that the relative arrangement of the two exchange surfaces (35) forces at least one portion of the stream of absorbent fluid (10) to pass at least once through one of the exchange surfaces (35) and causes mixing of the stream of absorbent fluid (10).
Abstract:
A solar powered intermittent absorption refrigeration system utilizes helical coil heat exchangers for generation, absorption, dephlegmation, condensation and heat recovery. The thermo-siphon effect is used to supply and reject heat from the system, to recover and utilize heat from a waste energy unit, to reject heat of absorption, and to pressurize and depressurize the system. The system produces ice blocks during the nighttime without any requirement of electrical energy for the operation of the system.
Abstract:
Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.
Abstract:
A hybrid absorber is disclosed for a closed absorption cycle apparatus. The hybrid absorber is comprised of a non-adiabatic section plus an adiabatic spray section in that order, with absorbent solution and vapor supplied sequentially to them. The spray section preferably also includes a non-adiabatic spray cooler. Coolant is supplied to the non-adiabatic absorber and the cooler either in parallel or in series, countercurrently to the absorbent.
Abstract:
There is provided a large-sized reboiler that can achieve space saving and reduction in plant cost. Specifically, there is provided a large-sized reboiler comprising a vessel of which a liquid is supplied from a lower part and a vaporized gas is discharged from an upper part; and a heat transfer tube group arranged in such a manner that a void penetrating in the up-and-down direction is formed in the vessel, wherein a maximum length of a cross-sectional figure of a flow path for the liquid exceeds 2 m, and the void occupies 5 to 10% of an area of the cross-sectional figure of the flow path.
Abstract:
A system for hydrogen storage including a hydridable material associated with an amount of inert material of high heat capacity sufficient in amount to prevent, during hydriding, the temperature of the combined hydridable material-inert material from rising beyond that temperature at which the hydride of the hydridable material exhibits a hydrogen pressure equal to the partial pressure of hydrogen fed to the system. The system is insulated to inhibit heat transfer into or out of the system.
Abstract:
A sorption module for a sorption temperature-control device may include a housing enclosing a working chamber. A sorption zone and a phase change zone may be arranged in the working chamber where a working medium is displaceable reversibly between the sorption zone and the phase change zone. A sorption structure may be arranged in the sorption zone, and a phase change structure may be arranged in the phase change zone. An outer wall of the housing may include a double-walled section that may provide a cavity between an outer wall part and an inner wall part of the double-walled section, and the phase change zone may be arranged on an inner side of the inner wall part.
Abstract:
The invention is directed toward a vapor-liquid heat and/or mass exchange device that can be used in an integrated heat and/or mass transfer system. To achieve high heat and mass transfer rates, optimal temperature profiles, size reduction and performance increases, appropriately sized flow passages with microscale features, and countercurrent flow configurations between working fluid solution, vapor stream, and/or the coupling fluid in one or more functional sections of the desorber are implemented. In one exemplary embodiment of the present invention, a desorber section utilizes a heating fluid flowing in a generally upward direction and a concentrated solution flowing in a generally downward direction with gravity countercurrent to the rising desorbed vapor stream. To further increase the efficiency of the system, various types of column configurations can be used. Additionally, the surfaces of the microchannels can be altered to better transfer heat.