Abstract:
According to some embodiments, system and methods are provided, comprising providing a dual-mode model for a reciprocating compressor, wherein the model includes a measurement mode and a tuning mode; receiving one or more inputs to the model from an operating reciprocating compressor; and in response to receipt of the one or more inputs, executing the model in at least one of the measurement mode and the tuning mode, wherein: in a measurement mode, execution of the model further comprises calculating an actual flow rate of gas in the compressor based on the one or more inputs; and in a tuning mode, execution of the model further comprises calculating one of an unloader setting and a speed set point of a physical element of the compressor for a given flow rate of gas. Numerous other aspects are provided.
Abstract:
A direct-injection, supercharged internal combustion engine having at least one cylinder, in which each cylinder is equipped with a direct injection apparatus, a fuel supply system comprising a high-pressure side and a low-pressure side, and a high-pressure piston pump comprising a piston displaceable in translational fashion between a bottom dead center and a top dead center of a pressure chamber of variable volume. The displaceable piston jointly delimits the pressure chamber with variable volume in such a way that a displacement of the piston causes a change in the volume of the pressure chamber via actuation of least one movable actuation element.
Abstract:
A positive-displacement pump for fluid products, in particular paints, colorants and the like, includes a pump body in which there is formed a pumping chamber, in which a piston is mounted for sliding and is controlled so as to advance and withdraw in order to vary the useful volume of the pumping chamber. The pumping chamber extends in accordance with a longitudinal axis which is inclined, in a non-vertical manner, with respect to a horizontal plane and having an upper region which is positioned at a greater height with respect to a horizontal plane and in the region of which the pumping chamber is placed in communication with at least one intake pipe of a fluid product.
Abstract:
A pump for a SCR system in vehicles which includes a housing in which at least one pump element is arranged which is activated by a eccentric drive and has at least one a pump piston. The at least one pump piston includes at least a spring bellow which is elastically deformable during pump operation.
Abstract:
A micropump according to the invention uses an eccentric cam member rotating within a pump housing to sequentially open and close valves in the pump housing to withdraw fluid from a reservoir and provide metered amounts of the fluid to a cannula port for administration to a patient. The micropump may be used in a disposable pump for continuous infusion of medication such as insulin.
Abstract:
A micropump according to the invention uses an eccentric cam member rotating within a pump housing to sequentially open and close valves in the pump housing to withdraw fluid from a reservoir and provide metered amounts of the fluid to a cannula port for administration to a patient. The micropump may be used in a disposable pump for continuous infusion of medication such as insulin.
Abstract:
A regenerative hydraulic pump that allows for efficient operation of a hydraulic system under high pressure/low flow conditions that comprises a crankshaft providing a rotating inertial mass, and a regenerative hydraulic pump cylinder that comprises a pump cylinder housing, a pump piston mechanically connected to the crankshaft; and a compliant pressure chamber that stores a portion of the energy extracted by the pump piston during a pumping stroke for release back to the pump piston and to the crankshaft during a regenerative back stroke.
Abstract:
A pump unit includes a pump housing having a low-pressure inlet and a high-pressure outlet. A working medium is fed via the low-pressure inlet to a working chamber formed in the pump housing. The working medium is discharged from the working chamber via the high-pressure outlet. The pump unit also includes a pump piston channel formed in the pump housing and having a longitudinal axis. The pump unit has a first pump piston arranged movably along the longitudinal axis in the pump piston channel and coupled hydraulically to the working chamber. The pump unit also has a second pump piston arranged movably along the longitudinal axis in the pump piston channel and coupled hydraulically via a compensation volume to the first pump piston, wherein the compensation volume is coupled hydraulically to a compensation unit configured to adapt the compensation volume based on a pressure in the working chamber.
Abstract:
According to one embodiment, a radial fluid device comprises a cylinder block, a first plurality of pistons, a second plurality of pistons, a first cam, a second cam, and a cam rotation device. Each of the first plurality of pistons are slidably received within a different one of a first plurality of radially extending cylinders. Each of the second plurality of pistons are slidably received within a different one of a second plurality of radially extending cylinders. The first cam is disposed about the first plurality of radially extending cylinders. The second cam is disposed about the second plurality of radially extending cylinders. The cam rotation device is coupled to the first cam and the second cam. The cam rotation device is operable to rotate the first cam in a first direction and the second cam in a second direction.
Abstract:
A piston air compressor having a suction chamber and a connection chamber separated from the suction chamber. An air channel is provided from the connection chamber to the suction chamber.