Abstract:
Methods and systems are provided for a cylinder head. In one example, a system comprises cylinder head having a bore arranged therein. The bore comprises a coupling element therein configured to selectively receive an ignition plug.
Abstract:
A device for supplying lubricant for a fuel injection nozzle for injecting compressed natural gas (CNG) into an internal combustion engine is provided. The device includes a lubricant reservoir for supplying lubricant and having a feed pressure supply apparatus for applying a feed pressure to lubricant which is stored in the lubricant reservoir, where a feed pressure valve for setting the feed pressure is provided between the feed pressure supply apparatus and the lubricant reservoir, and a lubricant metering valve for metering the lubricant supply is provided between the lubricant reservoir and the fuel injection nozzle, where the lubricant is fed to the lubricant reservoir from an oil gallery of the internal combustion engine.
Abstract:
Methods and systems are provided for a prechamber. In one example, the prechamber comprises an interior volume fluidly coupled to flow channels of an ignition plug and a bracket. The bracket is configured to move relative to the ignition plug and a cylinder head to misalign the flows channels and block the flow of air to the interior volume.
Abstract:
A high-pressure fuel injection system includes a nozzle housing and a nozzle needle that is axially displaceable in the nozzle housing and with which an outflow opening in a valve seat of the fuel injection nozzle can be closed and opened. At least one pulsation reducer is arranged between the nozzle needle and an inside of the nozzle housing. The pulsation reducer includes a plurality of breakwater elements that dampen pressure pulsations in the fuel flowing through the injection nozzle to the outflow opening.
Abstract:
An injection valve for injecting fuel into a combustion chamber of an internal combustion engine comprises a valve seat, a valve element, at least one injection opening formed in the valve seat and leading to the combustion chamber, the at least one injection opening opened or closed by a stroke motion of the valve element, a catalytic coating provided in a region of the injection valve which faces the combustion chamber, and at least one protuberance which is elongated in a direction of the combustion chamber and projects into the combustion chamber.
Abstract:
Systems and methods are provided for an engine. The system comprises a direct injection engine having a cylinder in which a piston is slidingly supported to form in combination with a cylinder head a combustion chamber; a fuel injector for the cylinder having a catalytic coated tip portion that projects into the combustion chamber; and an electronic controller to control the operation of the engine and operates the engine in a heating mode of operation if heating of the fuel injector tip is requested. Various methods for heating the fuel injector tip are proposed including operating the engine on a reduced number of cylinders and varying one or both of fuel injection timing and quantity of fuel injected and the ignition timing in order to increase the temperature of combustion.
Abstract:
An adjustable ignition plug, with one or more variable electrodes, and a method to adjust the electrode gap spacing based on various engine operating parameters. This better enables the reliable ignition of the air-fuel mixture in a cylinder of a direct-injection internal combustion engine under various engine operating conditions.
Abstract:
A direct-injection engine having a cylinder in which a combustion chamber is jointly formed by a piston crown of a piston, which is movable along the longitudinal axis of the cylinder, and a cylinder head, and an injection nozzle, which is arranged in the cylinder head on the opposite side of the piston crown eccentrically, spaced apart from the longitudinal axis of the cylinder, for the direct injection of fuel, which injection nozzle has a nozzle needle movable in a nozzle body, wherein the needle in the open position of the nozzle is moved into the combustion chamber, opening up an annular gap arranged between the nozzle body and needle.
Abstract:
A high-pressure fuel injection system includes a nozzle housing and a nozzle needle that is axially displaceable in the nozzle housing and with which an outflow opening in a valve seat of the fuel injection nozzle can be closed and opened. At least one pulsation reducer is arranged between the nozzle needle and an inside of the nozzle housing. The pulsation reducer includes a plurality of breakwater elements that dampen pressure pulsations in the fuel flowing through the injection nozzle to the outflow opening.
Abstract:
Approaches for controlling dwell time in the ignition system of an internal combustion engine are provided. In one example, a method may include adjusting dwell based on engine operating conditions and further adjusting dwell in a manner proportional to existent spark plug conditions. By constantly assessing spark plug condition during operating of the internal combustion engine, premature wear of the spark plug may be prevented leading to an extension in the service life of spark plug and other ignition system components.