Abstract:
A hydraulic fan drive for a cooling system of an internal combustion engine, in particular a diesel engine of a mobile working machine or a construction machine, is configured to be switched off for a short time or by way of a transition in dependence on a load of the internal combustion engine. A shut-off valve, which is arranged in a working line connecting a variable-displacement pump to a fan motor, is configured to switch off the fan drive. The fan drive is further configured to be switched off by rotational speed monitoring of the internal combustion engine.
Abstract:
A method for monitoring a rod pumped well and detecting when the well is pumped off. The method utilizes the measured rod load and position for each stroke to set load limits and position limits. The load limits and position limits are set as predetermined percentages of the difference between the maximum and minimum measured rod load and position. The area within the thus determined load and position limits is determined to detect when the well has pumped-off.
Abstract:
A piezoelectric microblower includes a vibrating plate including a piezoelectric element and arranged to be driven in a bending mode by applying a voltage of a predetermined frequency to the piezoelectric element, and a blower body arranged to fix both ends or a periphery of the vibrating plate and to define a blower chamber between the blower body and the vibrating plate, an opening being provided in a portion of the blower body facing a central portion of the vibrating plate. In a portion of the blower chamber corresponding to the central portion of the vibrating plate, a partition is provided around the opening and a resonance space is defined inside of the partition. A size of the resonance space is set such that a driving frequency of the vibrating plate and a Helmholtz resonance frequency of the resonance space correspond to each other.
Abstract:
A marine steering system operable in either power steering or manual hydraulic modes. The system employs a modified helm pump having a single rotatable input shaft connectable to a steering wheel and dual hydraulic and electronic output. An encoder, such as an optical incremental encoder or hall effect device, is mechanically coupled to the input shaft for generating an electronic steering control signal representative of the change in position of the steering wheel. In the power steering mode, the electronic steering signal is processed by an amplifier controlling the operation of an auxiliary pumpset connected to the rudder steering cylinder. A bypass manifold disposed between the helm pump and the steering cylinder disables the hydraulic steering system in the power steering mode. In the event of power failure, the bypass manifold valves are opened and the system automatically switches to manual hydraulic steering.
Abstract:
A rod-pump control device is disclosed. The rod-pump control device uses AMP (current) measurements for electric units, fuel or air usage for gas units, and can use pressure for either unit. The AMP/fuel/air sensors work as the primary trigger to indicate a pump-off condition on an oil and gas well. These sensors can be used as stand-alone triggers or in conjunction with other sensors to more accurately monitor pump efficiency. When the pump-controller starts to indicate an inefficient pump condition, it will turn the pump off by removing power from the electric motor. For gas powered units, the controller will remove power to disengage an electric clutch or send a signal to an engine controller to stop. An adjustable algorithm will use percentage change of off time, dependent on actual run time compared to a user definable target time to keep the pump operating at peak efficiency.
Abstract:
According to some embodiments, system and methods are provided, comprising providing a dual-mode model for a reciprocating compressor, wherein the model includes a measurement mode and a tuning mode; receiving one or more inputs to the model from an operating reciprocating compressor; and in response to receipt of the one or more inputs, executing the model in at least one of the measurement mode and the tuning mode, wherein: in a measurement mode, execution of the model further comprises calculating an actual flow rate of gas in the compressor based on the one or more inputs; and in a tuning mode, execution of the model further comprises calculating one of an unloader setting and a speed set point of a physical element of the compressor for a given flow rate of gas. Numerous other aspects are provided.
Abstract:
A control system for a machine having a cylinder and an accessory is disclosed. The control system may include a pump configured to provide fluid to the cylinder and the accessory, and a controller operatively connected to the pump. The controller may be configured to operate the pump to provide a primary flow to the cylinder at up to a predetermined maximum level for the cylinder. The predetermined maximum level for the cylinder may be less than a maximum flow capability of the pump. The controller may also be configured to operate the pump to provide a secondary flow to the accessory utilizing a remaining fluid.
Abstract:
A two (or more) piston pump system (10) is provided with both pumps (12) being crank (14) driven. The system does not have a mechanical camshaft, but a software algorithm, which acts like one in controller (20). The algorithm will LEARN and create a unique speed profile, which will mimic the mechanical camshaft. For practical purposes the speed profile of output gear is called Cam profile with software acting as an imaginary camshaft. The algorithm utilizes Crank Angle Estimation, Learn Curve Generation, Smoothing and Advance Timing Calculation.
Abstract:
A rod-pump control device is disclosed. The claimed rod-pump control device uses fuel or air usage for gas units, and can use pressure. The sensors work as the primary trigger to indicate a pump-off condition on an oil and gas well. These sensors can be used as stand-alone triggers or in conjunction with other sensors to more accurately monitor pump efficiency. When the pump-controller starts to indicate an inefficient pump condition, it will remove power to disengage an electric clutch or send a signal to an engine controller to stop. An adjustable algorithm will use percentage change of off time, dependent on actual run time compared to a user definable target time to keep the pump operating at peak efficiency.
Abstract:
A hydraulic fan drive for a cooling system of an internal combustion engine, in particular a diesel engine of a mobile working machine or a construction machine, is configured to be switched off for a short time or by way of a transition in dependence on a load of the internal combustion engine. A shut-off valve, which is arranged in a working line connecting a variable-displacement pump to a fan motor, is configured to switch off the fan drive. The fan drive is further configured to be switched off by rotational speed monitoring of the internal combustion engine.