Abstract:
Embodiments of emission reduction system including various embodiments of an emission filters for a power plant including a gas turbine are disclosed. The system includes: an emission filter; and a retraction system operably coupled to an exhaust passage of the gas turbine. The exhaust passage defines an exhaust path of exhaust from the gas turbine. The retraction system selectively moves the emission filter between a first location within the exhaust path and a second location out of the exhaust path. In a combined cycle power plant, the first location is upstream of a heat recovery steam generator (HRSG). The systems and filters described allow for temporary positioning of emission filter(s) just downstream of a gas turbine exhaust outlet, or upstream of an HRSG, where provided, for emission reduction at low loads or startup conditions, and removal of the emission filter(s) once operations move to higher loads.
Abstract:
A catalyst that is not only capable of efficiently treating CO even at a low exhaust gas temperature, but also capable of exerting favorable CO purification efficiency in a low-temperature exhaust gas even in a case of being exposed for a long time to an engine exhaust gas that is a high temperature and contains HC, CO, NOx, water vapor and the like; and an exhaust gas treatment technique are described. The catalyst for purifying exhaust gas contains: a noble metal; an oxide containing as a base material A at least two kinds of elements selected from the group consisting of aluminum, zirconium and titanium; and an oxide containing as a base material B at least one kind of element selected from the group consisting of silicon, cerium, praseodymium and lanthanum; in which the base material A and the base material B satisfy a specific formula.
Abstract:
An exhaust gas purification device for an internal combustion engine, in which a catalyst installed in an exhaust passage is quickly heated to the activation temperature of the catalyst. The exhaust gas purification device has a NOx purification catalyst (33) for adsorbing or occluding NOx in exhaust gas and reducing the NOx, a catalytic converter (31) installed at that position of an exhaust pipe (4) which is upstream of the NOx purification catalyst (33), a fuel reformer (50) installed separately from the exhaust pipe (4), producing a reformed gas, and supplying the reformed gas, as a reducing gas, into the exhaust pipe (4) from an introduction opening (14) formed in that portion of the exhaust pipe (4) which is upstream of the NOx purification catalyst (33) and the catalytic converter (31), and an ECU (40) which, while the exhaust gas air-fuel ratio is being set to be lean, supplies the reducing gas into the exhaust pipe (4) and controls at least one of a throttle valve (9), an EGR valve (13), and a turbocharger (8) to regulate the flow rate of the exhaust gas flowing in the exhaust pipe (4).
Abstract:
There is described an exhaust gas cleaning apparatus for the cleaning of exhaust gas which originates from a combustion process in a combustion chamber. The exhaust gas cleaning apparatus comprises an exhaust gas flow path which is arranged in fluid communication with the combustion chamber and through which the exhaust gas is flowing, and a cold flame gas supply which provides a cold flame gas. The cold flame gas supply is arranged in fluid communication with the exhaust gas flow path such that the cold flame gas can be injected into the exhaust gas flowing in the exhaust gas flow path and thereby, at least partly, remove impurities such as particulate matter, NOx and hydrocarbons, which are present in the exhaust gas. There is also described a method for cleaning of exhaust gas.
Abstract:
A system and method for regenerating a device in an engine exhaust after-treatment system is provided. To regenerate the device, a syngas stream is introduced into the engine exhaust stream and combusts in the presence of a catalyst in the after-treatment system, raising the temperature. A supplemental liquid fuel stream is then selectively introduced into and is vaporized by the syngas stream to form a combined fuel stream. Combustion of the combined fuel stream with the engine exhaust in the presence of the catalyst further heats the device bringing it to a temperature suitable for regeneration. The catalyst can be upstream of or within the device being regenerated.
Abstract:
An exhaust emission control device is disclosed. The device includes an NOx-occlusion reduction catalyst incorporated in an exhaust passage for reduction and purification of NOx, a fuel reforming catalyst structure and plasma fuel reforming unit for decomposition of the fuel into H2 and CO is arranged in the exhaust passage upstream of the reduction catalyst, so that the fuel is decomposed into H2 and CO such that NOx on the surface of the NOx-occlusion reduction catalyst can be efficiently reduced into N2. Thus, high NOx reduction ratio can be always obtained irrespective of variety of operational conditions.
Abstract:
Provided is an exhaust gas cleaner by which nitrogen oxides contained in an exhaust gas can be efficiently removed in a wide temperature range from a low temperature. The exhaust gas cleaner (10) is for use in purifying the exhaust gas discharged from an internal combustion engine (15) in which fuel is fed under periodical rich or lean conditions and burned. The cleaner (10) comprises: a reforming means (11) which generates a reforming gas comprising hydrogen and carbon monoxide; a means of low-temperature oxidation (12) which contains palladium and which thereby can oxidize and adsorb nitrogen oxides at low temperatures and oxidize the hydrogen and carbon monoxide; and a purifying means (13) which under lean conditions adsorbs nitrogen oxides and which under rich conditions releases the adsorbed nitrogen oxides and removes the released nitrogen oxides with the hydrogen and carbon monoxide present in the channel. By contriving the layout of the reforming means (11), means of low-temperature oxidation (12), and purifying means (13), nitrogen oxides contained in an exhaust gas can be removed in a wide temperature range from a low temperature.
Abstract:
Exhaust gas post treatment system for nitrogen oxide and particle reduction of an internal combustion engines operated with excess air. An oxidation catalytic converter is disposed in the exhaust gas stream of the engine for converting at least a portion of the nitric oxide of the exhaust gas into nitrogen dioxide. A metering device adds reduction agent to the exhaust gas stream downstream of the oxidation catalytic converter and/or to a partial exhaust gas stream branched off upstream of the oxidation catalytic converter and returned to the exhaust gas stream downstream thereof. The reduction agent is ammonia or a material that releases ammonia downstream of the supply location due to the hot exhaust gas. A particle separator or filter is disposed in the exhaust gas stream downstream of the oxidation catalytic converter and of the supply location, and converts carbon particles accumulated in the separator or filter into carbon monoxide, carbon dioxide, nitrogen and nitric oxide with the aid of nitrogen dioxide in the exhaust gas stream. An SCR catalytic converter is disposed downstream of the separator or filter for reducing nitrogen oxides in the exhaust gas stream into nitrogen and water vapor with the aid of ammonia or released ammonia by selective catalytic reduction.
Abstract:
An exhaust emission control apparatus includes a NOX catalyst provided within an exhaust passage of an internal combustion engine where fuel combustion is continuously performed at a lean air/fuel ratio, and a reducing agent supply valve within the exhaust passage upstream of the NOX catalyst. If the NOX stored in the NOX catalyst is required to be decreased, a selector valve position is selected between a forward and a reverse flow positions so as to decrease a flow rate of the exhaust gas flowing through the NOX catalyst. Then a reducing agent is supplied upon elapse of a predetermined time period from the timing when the signal instructing to select the position of the selector valve. An oxygen sensor detects an oxygen concentration of the exhaust gas discharged from the NOX catalyst upon supply of the reducing agent. The elapsing time is corrected such that a peak value of the detected oxygen concentration accords with the target value.
Abstract:
A purification system for variable post injection in LP EGR, the system includes a turbo charger disposed downstream of a diesel engine, a DPF (catalyzed particulate filter) disposed downstream of the turbo charger, a NOx reduction apparatus disposed upstream or downstream of the DPF, a bypass line diverged from the DPF for mixing exhaust gas and air inflowing the turbo charger, a exhaust gas control portion disposed downstream of the DPF for controlling flowing of the exhaust gas and a lean/rich controlling portion for controlling lean/rich of the exhaust gas.