Abstract:
A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead is isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat. The beads may be trapped in the form of an array of localized magnetic field regions.
Abstract:
A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead is isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat. The beads may be trapped in the form of an array of localized magnetic field regions.
Abstract:
A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead is isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat. The beads may be trapped in the form of an array of localized magnetic field regions.
Abstract:
Methods and systems for monitoring reactions by observing signals deriving from those reactions, using signal processing that allows differentiation between signals that are otherwise optically overlapping by conventional detection methods. Centroid determination is used to identify signal sources that are presenting confounding overlapping signals due to their physical proximity, and/or to identify discrete signals from different reaction centers.
Abstract:
Apparatus comprising surface site comprising substantially inorganic surface having chemical composition selected from group consisting of metals, semiconductors, insulators, and mixtures thereof, the surface positioned within polypeptide bonding region and having selective bonding affinity for polypeptide; plurality of interlayers between which surface site is interposed; distal site end on surface site and distanced from interlayers, the surface being provided on distal site end; surface site and interlayers being interposed between first and second supports; first and second conductors provided on first and second supports and having respective first and second distal conductor ends positioned within polypeptide bonding region; conductors being capable of applying external voltage potential across polypeptide bonding region. Apparatus, optionally comprising such first and second supports and conductors; and comprising third conductor in electrical communication with surface site, the third conductor positioned for electrical communication with source of an external bias voltage. Techniques for making apparatus.
Abstract:
The present invention provides for methods and systems for Electronic DNA sequencing, single molecule DNA sequencing, and combinations of the above, providing low cost and convenient sequencing.
Abstract:
Method that includes providing plurality of test sites each having first and second layers respectively including inorganic first and second surface sites forming parts of interior of a well, the surface sites having positions and thicknesses being configured for locating thereon portion of unidentified amino acid-containing molecules; exposing each of a first plurality of the test sites to a fluid containing a different one of plurality of pre-identified amino acid-containing molecules and determining bonding signatures onto each of first plurality of test sites; exposing each of second plurality of test sites to another fluid containing unidentified amino acid-containing molecule and determining bonding signatures onto second plurality of test sites; and comparing bonding signatures to determine or exclude identity of unidentified amino acid-containing molecule.
Abstract:
A total forensic DNA casework management system and method for the deconvolution of mixed DNA samples using a novel, 3-rule algorithm to determine the proportional allele sharing of the sample's contributors. The process is fully document, can assess and process DNA anomalies and artifacts, and transforms raw STR data to produce final DNA profile types, peak height ratios, proportions, fitting criteria and associated graphs.
Abstract:
Apparatus comprising a surface site comprising a substantially inorganic surface having a chemical composition selected from the group consisting of metals, semiconductors, insulators, and mixtures thereof, the surface positioned within a polypeptide bonding region and having a selective bonding affinity for a polypeptide; a plurality of interlayers between which the surface site is interposed; a distal site end on the surface site and distanced from the interlayers, the surface being provided on the distal site end; the surface site and the interlayers being interposed between first and second supports; first and second conductors provided on the first and second supports and having respective first and second distal conductor ends positioned within the polypeptide bonding region; the conductors being capable of applying an external voltage potential across the polypeptide bonding region. Apparatus, optionally comprising such first and second supports and conductors; and comprising a third conductor in electrical communication with the surface site, the third conductor positioned for electrical communication with a source of an external bias voltage. Techniques for making apparatus.