Abstract:
Solid or semi-solid feedstock is melted in an open bottom electric induction cold crucible furnace. Directionally solidified multi-crystalline solid purified material continuously exits the bottom of the furnace and may optionally pass through a thermal conditioning chamber before being gravity fed into a transport mold where an ingot of the purified multi-crystalline solid material is transported to a remote holding area after the transport mold is filled with the multi-crystalline material and cut from the continuous supply of material. Cool down of the ingot is accomplished remote from the open bottom of the electric induction cold crucible furnace.
Abstract:
Provided is a monocrystalline silicon carbide ingot containing a dopant element, wherein a maximum concentration of the dopant element is less than 5×1017 atoms/cm3 and the maximum concentration is 50 times or less than that of a minimum concentration of the dopant element. Also provided is a monocrystalline silicon carbide wafer made by cutting and polishing the monocrystalline silicon carbide ingot, wherein a electric resistivity at room temperature of the wafer is 5×103 Ωcm or more. Further provided is a method for manufacturing the monocrystalline silicon carbide including growing the monocrystalline silicon carbide on a seed crystal from a sublimation material by a sublimation method. The sublimation material includes a solid material containing a dopant element, and the specific surface of the solid material containing the dopant element is 0.5 m2/g or less.
Abstract:
System and method generating a polycrystalline thin film with a particular crystalline orientation for use as thin film transistors, microelectronic devices and the like. In one exemplary embodiment, a polycrystalline silicon thin film that has a substantially uniform crystalline orientation is produced so that its crystals are provided in at least one direction. The crystalline orientation may be any low index orientation and may be achieved with sequential lateral solidification. The polycrystalline thin film may then be crystallized in a direction that is perpendicular to the first direction by, e.g., a sequential lateral solidification procedure so that the crystalline orientation is approximately the same as the first direction, and is substantially uniform in all directions.
Abstract:
The present disclosure controls the heat source unit such that a to-be-processed object in which a hydrogen-containing to-be-processed layer is formed is irradiated with light in two stages, and thus the electrical characteristics of a semiconductor device may be suppressed and prevented from being deteriorated due to hydrogen. That is, ultraviolet light (UV) which is firstly radiated may induce a chemical reaction for separating Si—H bonds in the to-be-processed layer, and infrared light (IR) which is secondly radiated may induce a thermal reaction for vaporizing the separated hydrogen from the Si—H bonds. As such, both a chemical reaction for separating bonds of hydrogen and other ions in the to-be-processed layer and a thermal reaction for vaporizing hydrogen are performed, and thus hydrogen may be more easily removed than a temperature at which hydrogen is vaporized from the to-be-processed layer by only a thermal reaction.
Abstract:
According to one embodiment, a laser annealing method includes: detecting an intensity distribution of a laser light formed as a line beam by a line beam optical system; dividing width in short axis direction of the line beam in the detected intensity distribution by number of times of the irradiation per one site and partitioning the width; and calculating increment of crystal grain size of a non-crystalline thin film for energy density corresponding to wave height of the partitioned intensity distribution, and summing the increments by number of times of pulse irradiation, when energy density of the laser light is larger than a threshold, the crystal grain size of the non-crystalline thin film taking a downward turn at the threshold, the increment summed before the energy density exceeds the threshold being set to zero.
Abstract:
Provided is a monocrystalline silicon carbide ingot containing a dopant element, wherein a maximum concentration of the dopant element is less than 5×1017 atoms/cm3 and the maximum concentration is 50 times or less than that of a minimum concentration of the dopant element. Also provided is a monocrystalline silicon carbide wafer made by cutting and polishing the monocrystalline silicon carbide ingot, wherein a electric resistivity at room temperature of the wafer is 5×103 Ωcm or more. Further provided is a method for manufacturing the monocrystalline silicon carbide including growing the monocrystalline silicon carbide on a seed crystal from a sublimation material by a sublimation method. The sublimation material includes a solid material containing a dopant element, and the specific surface of the solid material containing the dopant element is 0.5 m2/g or less.
Abstract:
The disclosed subject matter relates to systems and methods for preparing epitaxially textured polycrystalline films. In one or more embodiments, the method for making a textured thin film includes providing a precursor film on a substrate, the film includes crystal grains having a surface texture and a non-uniform degree of texture throughout the thickness of the film, wherein at least a portion of the this substrate is transparent to laser irradiation; and irradiating the textured precursor film through the substrate using a pulsed laser crystallization technique at least partially melt the film wherein the irradiated film crystallizes upon cooling to form crystal grains having a uniform degree of texture.
Abstract:
The disclosed subject matter relates to systems and methods for preparing epitaxially textured polycrystalline films. In one or more embodiments, the method for making a textured thin film includes providing a precursor film on a substrate, the film includes crystal grains having a surface texture and a non-uniform degree of texture throughout the thickness of the film, wherein at least a portion of the this substrate is transparent to laser irradiation; and irradiating the textured precursor film through the substrate using a pulsed laser crystallization technique at least partially melt the film wherein the irradiated film crystallizes upon cooling to form crystal grains having a uniform degree of texture.
Abstract:
The disclosed subject matter relates to systems and methods for preparing epitaxially textured polycrystalline films. In one or more embodiments, the method for making a textured thin film includes providing a precursor film on a substrate, the film includes crystal grains having a surface texture and a non-uniform degree of texture throughout the thickness of the film, wherein at least a portion of the this substrate is transparent to laser irradiation; and irradiating the textured precursor film through the substrate using a pulsed laser crystallization technique at least partially melt the film wherein the irradiated film crystallizes upon cooling to form crystal grains having a uniform degree of texture.