摘要:
Disclosed herein are pharmaceutical compositions and methods for inhibiting oxidative stress in a subject having atrial or ventricular arrhythmias, ventricular failure or heart failure. The methods include administering an effective amount of a NOX2 inhibitor agent to the subject, wherein said administering is under conditions such that a level of oxidative stress in myocardial tissue is reduced or eliminated. The pharmaceutical compositions include a NOX2 inhibitor agent.
摘要:
Disclosed herein are pharmaceutical compositions and methods for inhibiting oxidative stress in a subject having atrial or ventricular arrhythmias, ventricular failure or heart failure. The methods include administering an effective amount of a NOX2 inhibitor agent to the subject, wherein said administering is under conditions such that a level of oxidative stress in myocardial tissue is reduced or eliminated. The pharmaceutical compositions include a NOX2 inhibitor agent.
摘要:
The invention described herein relates to the discovery that renalase, and fragments thereof, are useful for the treatment or prevention of cardiac and renal diseases or disorders. Thus, the invention relates to compositions comprising renalase, or fragments thereof, and methods for treating and preventing cardiac and renal disease or disorders.
摘要:
The present invention relates to modulators, in particular inhibitors, of the expression and/or the function of NADPH Oxidase 4 (Nox4) for use in the prevention and/or treatment of nerve injury, in particular pain, more particularly neuropathic pain. Further disclosed is a method for the identification of Nox4 modulators, a pharmaceutical composition comprising a Nox4 inhibitor and a method for preventing and treating pain, in particular neuropathic pain, in a subject in need of such a treatment. Also, the invention relates to modulators, in particular inhibitors, of the expression and/or the function of NADPH Oxidase 4 (Nox4) for use in the prevention and/or treatment of nerve injury associated with dysmyelination and methods for preventing and treating dysmyelination and diseases associated with dysmyelination.
摘要:
Water-forming NADH oxidase derived from Streptococcus mutans should be further improved in terms of stability for practical use in industrial production. An object of the present invention is to provide an enzyme that is obtained through modification of a water-forming NADH oxidase, which is useful as an NAD+ regeneration system for stereoselective oxidation catalyzed by an oxidoreductase, by protein engineering techniques so that the enzyme can withstand long-term use without exhibiting a reduction of its activity for the regeneration of NAD+, that is, an enzyme having improved stability, and to provide a method for efficiently producing a useful substance such as an optically active alcohol or amino acid. The present invention relates to an enzyme modification method that can improve the stability of water-forming NADH oxidase derived from Streptococcus mutans by appropriately introducing mutation.
摘要:
The present invention provides a genetically modified lactic acid bacterium capable of producing diacetyl under aerobic conditions. Additionally the invention provides a method for producing diacetyl using the genetically modified lactic acid bacterium under aerobic conditions in the presence of a source of iron-containing porphyrin and a metal ion selected from Fe3+, Fe2+ and Cu2+. The lactic acid bacterium is genetically modified by deletion of those genes in its genome that encode polypeptides having lactate dehydrogenase (E.C 1.1.1.27/E.C.1.1.1.28); α-acetolactate decarboxylase (E.C 4.1.1.5); water-forming NADH oxidase (E.C. 1.6.3.4); phosphotransacetylase (E.C.2.3.1.8) activity; and optionally devoid of or deleted for genes encoding polypeptides having diacetyl reductase ((R)-acetoin forming; EC: 1.1.1.303); D-acetoin reductase; butanediol dehydrogenase ((R,R)-butane-2,3-diol forming; E.C. 1.1.1.4/1.1.1.-) and alcohol dehydrogenase (E.C. 1.2.1.10) activity. The invention provides for use of the genetically modified lactic acid bacterium for the production of diacetyl and a food product.
摘要:
The invention provides compositions and methods for binding and inhibiting renalase. In one embodiment, the renalase binding molecule inhibits renalase activity. Thus, in diseases and conditions where a reduction of renalase activity is beneficial, such inhibitory renalase binding molecules act as therapeutics.
摘要:
Water-forming NADH oxidase derived from Streptococcus mutans should be further improved in terms of stability for practical use in industrial production. An object of the present invention is to provide an enzyme that is obtained through modification of a water-forming NADH oxidase, which is useful as an NAD+ regeneration system for stereoselective oxidation catalyzed by an oxidoreductase, by protein engineering techniques so that the enzyme can withstand long-term use without exhibiting a reduction of its activity for the regeneration of NAD+, that is, an enzyme having improved stability, and to provide a method for efficiently producing a useful substance such as an optically active alcohol or amino acid. The present invention relates to an enzyme modification method that can improve the stability of water-forming NADH oxidase derived from Streptococcus mutans by appropriately introducing mutation.
摘要:
A recombinant yeast having a reduced pyruvate decarboxylase activity, in the génome of which has been inserted: —one or more nucleic acids encoding an acetolactate synthase or ALS, —one or more nucleic acids encoding an acetolactate decarboxylase or ALD, —one or more nucleic acids encoding a butancdiol dehydrogenase or BDH, and —one or more copies of a nucleic acids encoding a NADH oxidase or NOXE.
摘要:
Water-forming NADH oxidase derived from Streptococcus mutans should be further improved in terms of stability for practical use in industrial production. An object of the present invention is to provide an enzyme that is obtained through modification of a water-forming NADH oxidase, which is useful as an NAD+ regeneration system for stereoselective oxidation catalyzed by an oxidoreductase, by protein engineering techniques so that the enzyme can withstand long-term use without exhibiting a reduction of its activity for the regeneration of NAD+, that is, an enzyme having improved stability, and to provide a method for efficiently producing a useful substance such as an optically active alcohol or amino acid. The present invention relates to an enzyme modification method that can improve the stability of water-forming NADH oxidase derived from Streptococcus mutans by appropriately introducing mutation.