摘要:
In one embodiment, a method of treating cancer in a patient comprises administering cGAMP or cGAsMP to a patient having cancer and allowing the cGAMP or cGAsMP to treat the cancer. In another embodiment, a method for en2ymatically synthesizing and purifying cGAMP or cGAsMP comprises providing cGAS; combining cGAS with ATP or ATP phosphorothioate, respectively, and GTP to produce cGAMP or cGAsMP; separating cGAMP or cGAsMP from the cGAS and DNA by ultrafiltration; and purifying cGAMP or cGAsMP using ion exchange chromatography and optionally gel filtration chromatography.
摘要:
A process for the enzymatic regeneration of the redox cofactors NAD+/NADH and NADP+/NADPH in a one-pot reaction, wherein, as a result of at least two further enzymatically catalyzed redox reactions proceeding in the same reaction batch (product-forming reactions), one of the two redox cofactors accumulates in its reduced form and, respectively, the other one in its oxidized form, characterized in that a) in the regeneration reaction which reconverts the reduced cofactor into its original oxidized form, oxygen or a compound of general formula R1C(O)COOH is reduced, and b) in the regeneration reaction which reconverts the oxidized cofactor into its original reduced form, a compound of general formula R2CH(OH)R3 is oxidized and wherein R1, R2 and R3 in the compounds have different meanings.
摘要:
A practical method for enzymatically synthesizing c-di-GMP with excellent productivity is provided. A diguanylate cyclase having physical and chemical characteristics (A) to (F): (A) catalytic action on reaction “2 GTP→c-di-GMP”; (B) a molecular weight of 19800±2000; (C) an optimum pH of 7.3 to 9.4; (D) an optimum temperature of 35 to 60° C.; (E) thermal stability as the remaining activity of 90% or higher after heated for 60 minutes under conditions of 50° C. and pH7.8; and (F) the presence of GGDEF (SEQ ID NO:26) domain and the lack of amino acid sequence KXXD (SEQ ID NO:23) in the i-site.
摘要:
A process for the enzymatic regeneration of the redox cofactors NAD+/NADH and NADP+/NADPH in a one-pot reaction, wherein, as a result of at least two further enzymatically catalyzed redox reactions proceeding in the same reaction batch (product-forming reactions), one of the two redox cofactors accumulates in its reduced form and, respectively, the other one in its oxidized form, characterized in that a) in the regeneration reaction which reconverts the reduced cofactor into its original oxidized form, oxygen or a compound of general formula R1C(O)COOH is reduced, and b) in the regeneration reaction which reconverts the oxidized cofactor into its original reduced form, a compound of general formula R2CH(OH)R3 is oxidized and wherein R1, R2 and R3 in the compounds have different meanings.
摘要:
An object of the present invention is to provide a method for converting the coenzyme dependency of enzymes of the medium-chain dehydrogenase/reductase (MDR) family. A further object of the present invention is to provide enzyme variants of the MDR family whose coenzyme dependency is converted by the conversion method and a method for enzymatically producing optically active alcohols using the enzymes. The present inventors developed a novel enzyme conversion method for converting the coenzyme dependency of enzymes of the MDR family, rationally designed enzyme variants that are altered by the enzyme conversion method to be able to use NADPH as a coenzyme from a useful enzyme of the MDR family that uses NADH as a coenzyme, and actually provide variants having such an ability.
摘要:
This invention is metabolically engineer bacterial strains that provide increased intracellular NADPH availability for the purpose of increasing the yield and productivity of NADPH-dependent compounds. In the invention, native NAD-dependent GAPDH is replaced with NADP-dependent GAPDH plus overexpressed NADK. Uses for the bacteria are also provided.
摘要:
The present invention provides a novel process for preparing nicotinamide adenine dinucleotide phosphate (NADP). The process of the present invention comprises performing phosphorylation using a polyphosphoric acid or a salt thereof and nicotinamide adenine dinucleotide (NAD+) as substrates in the presence of a polyphosphate-dependent NAD+ kinase from a Mycobacterium, wherein the reaction solution contains 0.1-15% by weight of the polyphosphoric acid or a salt thereof, and 5-150 mM of a divalent metal ion.
摘要:
The present invention generally relates to a nicotinamide adenine dinucleotide (NAD) biosynthesis system and methods of screening for NAD biosynthesis effectors. Among the various aspects of the present invention is the provision of an in vitro-reconstituted mammalian NAD biosynthesis system that can be used for the high-throughput screening of chemical activators and inhibitors for mammalian NAD biosynthesis. Another aspect of the invention provides a method of identifying a compound that effects in vivo activity of NAD metabolic enzymes. Further aspects of the invention include nucleic acid sequences, vectors, and transformed cells that can be used in the methods described herein.
摘要:
The invention relates to processes for stabilizing the activity of an enzyme, comprising mixing a phosphine or phosphite with an oxidoreductase enzyme.
摘要:
An objective of the present invention is to provide polypeptides capable of retaining a strong enzyme activity of formate dehydrogenase in the presence of an organic solvent and to provide the uses thereof. Formate dehydrogenase mutant polypeptides, which are resistant to organic solvents, were constructed by substituting cysteines at position 146 and/or at position 256 in the amino acid sequence of Mycobacterium vaccae-derived formate dehydrogenase by site-directed mutagenesis. The polypeptides have strong activities of formate dehydrogenase in the presence of an organic solvent. The mutants are useful for the production of alcohols using ketones as raw material, etc.