Abstract:
A honeycomb body made of a composite material for fire-resistant lightweight structures including honeycomb cells having a cross section is provided. The cell walls of the honeycomb cells are produced from a composite material. The composite material has at least one carrier, for example a woven fabric or a laid fabric made of fibers, and a matrix into which the carrier is embedded. The matrix includes a silicon-based ceramic material, of which the proportion by mass in the matrix along the cell walls is at least 30 wt. %. A method for producing such a ceramic honeycomb body and a honeycomb tube as an intermediate product for the same are also provided. A flat semi-finished product as a curable intermediate product for the production of fire-resistant fiber composite lightweight structures, which has a matrix mixture including dispersed silicon particles, is also provided.
Abstract:
Provided are an α-SiAlON porous ceramic, and a preparation method and use thereof. The α-SiAlON porous ceramic has a dielectric constant of 1.19 to 3.21 at 12 GHz, a dielectric loss of 0.33×10−3 to 11.17×10−3, a thermal conductivity of 0.31 W/(m·K) to 0.81 W/(m·K) at room temperature, a thermal conductivity of 0.14 W/(m·K) to 0.59 W/(m·K) at a temperature of 1,500° C., and a bending strength of 72.4 MPa to 184.4 MPa.
Abstract:
A sialon sintered body and a cutting insert each having thermal shock resistance and VB wear resistance. The sialon sintered body and the cutting insert contain β-sialon and 21R-sialon and exhibit an X-ray diffraction peak intensity ratio [(I21R/IA)×100] of 5% or greater and smaller than 30%, wherein IA represents the sum of the peak intensities of the sialon species, and I21R represents the peak intensity of 21R-sialon, the ratio being calculated from the peak intensities of the sialon species obtained by using X-ray diffractometry.
Abstract:
This invention provides resin formulations which may be used for 3D printing and pyrolyzing to produce a ceramic matrix composite. The resin formulations contain a solid-phase filler, to provide high thermal stability and mechanical strength (e.g., fracture toughness) in the final ceramic material. The invention provides direct, free-form 3D printing of a preceramic polymer loaded with a solid-phase filler, followed by converting the preceramic polymer to a 3D-printed ceramic matrix composite with potentially complex 3D shapes or in the form of large parts. Other variations provide active solid-phase functional additives as solid-phase fillers, to perform or enhance at least one chemical, physical, mechanical, or electrical function within the ceramic structure as it is being formed as well as in the final structure. Solid-phase functional additives actively improve the final ceramic structure through one or more changes actively induced by the additives during pyrolysis or other thermal treatment.
Abstract:
A Ca—SiAlON ceramic with enhanced mechanical properties and a method employing micron-sized and submicron precursors to form the Ca—SiAlON ceramic. The Ca—SiAlON ceramic comprises not more than 42 wt % silicon, relative to the total weight of the Ca—SiAlON ceramic. The method employs submicron particles and also allows for substituting a portion of aluminum nitride with aluminum to form the Ca—SiAlON ceramic with enhanced mechanical properties.
Abstract:
A Ca—SiAlON ceramic with enhanced mechanical properties and a method employing micron-sized and submicron precursors to form the Ca—SiAlON ceramic. The Ca—SiAlON ceramic comprises not more than 42 wt % silicon, relative to the total weight of the Ca—SiAlON ceramic. The method employs submicron particles and also allows for substituting a portion of aluminum nitride with aluminum to form the Ca—SiAlON ceramic with enhanced mechanical properties.
Abstract:
Methods for producing Polymer Derived Ceramic (PDCs) particles and bulk ceramic components and compositions from partially cured gelatinous polymer ceramic precursors and unique bulk composite PDC ceramics and unique PDC ceramic particles in size and composition. Methods of making fully dense PDCs over approximately 2 μm to approximately 300 mm in diameter for applications such as but not limited to proppants, hybrid ball bearings, catalysts, and the like. Methods can include emulsion processes or spray processes to produce PDCs. The ceramic particles and compositions can be shaped and chemically and materially augmented with enhancement particles in the liquid resin or gelatinous polymeric state before being pyrolyzed into ceramic components. The resulting ceramic components have a very smooth surface and are fully dense, not porous as ceramic components from the sol-gel process.
Abstract:
To reduce impurity contents of carbon and oxygen not contributing to light emission, then suppress deterioration of emission intensity of a phosphor, and improve emission efficiency of this phosphor. Therefore, there is provided a firing method of nitride or oxynitride phosphors, wherein a crucible 11 made of nitride is used as a firing container, and firing is performed, with this crucible covered with a lid (container 10), to manufacture the phosphor. The phosphor is expressed by a general composition formula MABOoN3-2/3O:Z in which element M is one or more kinds of elements having bivalent valency, element A is one or more kinds of elements having tervalent valency, element B is one or more kinds of elements having tetravalent valency, O is oxygen, N is nitrogen, and element Z is an activating agent, satisfying o≧0.
Abstract:
A semiconductor light emitting device comprising a light emitting layer disposed between an n-type region and a p-type region is combined with a ceramic layer which is disposed in a path of light emitted by the light emitting layer. The ceramic layer is composed of or includes a wavelength converting material such as a phosphor. Luminescent ceramic layers according to embodiments of the invention may be more robust and less sensitive to temperature than prior art phosphor layers. In addition, luminescent ceramics may exhibit less scattering and may therefore increase the conversion efficiency over prior art phosphor layers.
Abstract:
Embodiments of this disclosure pertain to articles that exhibit scratch-resistance and improved optical properties. In some examples, the article exhibits a reflection or transmission color shift of about 2 or less, when viewed at an incident illumination angle in the range from about 20 degrees to about 60 degrees from normal under an illuminant and hardness of at least 14 GPa at an indentation depth of at least 100 nm from the surface of the article. In one or more embodiments, the articles include a substrate, and an optical film disposed on the substrate. The optical film includes a scratch-resistant layer and an optical interference layer. The optical interference layer may include one or more sub-layers that exhibit different refractive indices. In one example, the optical interference layer includes a first low refractive index sub-layer, a second a second high refractive index sub-layer, and an optional third sub-layer.