ANTI-FOULING COATINGS FABRICATED FROM POLYMERS CONTAINING IONIC SPECIES

    公开(公告)号:US20190177572A1

    公开(公告)日:2019-06-13

    申请号:US16273908

    申请日:2019-02-12

    Abstract: An anti-fouling coating is provided, containing a continuous matrix comprising a first component; a plurality of inclusions comprising a second component, wherein the first component is a low-surface-energy polymer having a surface energy, and the second component is a hygroscopic material containing one or more ionic species. The low-surface-energy polymer and the hygroscopic material are chemically connected ionically or covalently, such as in a segmented copolymer composition comprising fluoropolymer soft segments and ionic species contained within the soft segments. The continuous matrix and the inclusions form a lubricating surface layer in the presence of humidity. Coefficient-of-friction experimental data is presented for various sample coatings. The incorporation of ionic species into the polymer chain backbone increases the hygroscopic behavior of the overall structure. Improvement in lubrication enables material to be cleared from a surface using the natural motion of an automotive or aerospace vehicle.

    MULTIPHASE COATINGS WITH SEPARATED FUNCTIONAL PARTICLES, AND METHODS OF MAKING AND USING THE SAME

    公开(公告)号:US20190048223A1

    公开(公告)日:2019-02-14

    申请号:US15957638

    申请日:2018-04-19

    Abstract: Some variations provide a multiphase polymer composition comprising a first polymer material and a second polymer material that are chemically distinct, wherein the first polymer material and the second polymer material are microphase-separated on a microphase-separation length scale from about 0.1 microns to about 500 microns, wherein the multiphase polymer composition comprises first solid functional particles selectively dispersed within the first polymer material, and wherein the first solid functional particles are chemically distinct from the first polymer material and the second polymer material. Some embodiments provide an anti-corrosion composition comprising first corrosion-inhibitor particles or precursors selectively dispersed within the first polymer material, wherein the multiphase polymer composition optionally further comprises second corrosion-inhibitor particles or precursors selectively dispersed within the second polymer material. These multiphase polymer compositions may be used for other applications, such as self-cleaning, self-healing, or flame-retardant coatings. Methods of making and using these multiphase polymer compositions are disclosed.

    BUGPHOBIC AND ICEPHOBIC COMPOSITIONS WITH FLUID ADDITIVES

    公开(公告)号:US20190023910A1

    公开(公告)日:2019-01-24

    申请号:US16144537

    申请日:2018-09-27

    Abstract: Some variations provide an anti-fouling segmented copolymer composition comprising: (a) one or more first soft segments selected from fluoropolymers; (b) one or more second soft segments selected from polyesters or polyethers; (c) one or more isocyanate species possessing an isocyanate functionality of 2 or greater, or a reacted form thereof; (d) one or more polyol or polyamine chain extenders or crosslinkers, or a reacted form thereof; and (e) a fluid additive selectively disposed in the first soft segments or in the second soft segments. Other variations provide an anti-fouling segmented copolymer precursor composition comprising a fluid additive precursor selectively disposed in the first soft segments or in the second soft segments, wherein the fluid additive precursor includes a protecting group. The anti-fouling segmented copolymer composition may be present in an anti-ice coating, an anti-bug coating, an anti-friction coating, an energy-transfer material, or an energy-storage material, for example.

    COMPOSITIONS FOR FABRICATING DURABLE, LOW-ICE-ADHESION COATINGS

    公开(公告)号:US20190023830A1

    公开(公告)日:2019-01-24

    申请号:US16144123

    申请日:2018-09-27

    Abstract: This invention provides durable, low-ice-adhesion coatings with excellent ice-adhesion reduction. Some variations provide a low-ice-adhesion composition comprising a composite material containing at least a first-material phase and a second-material phase that are nanophase-separated on a length scale from 10 nanometers to less than 100 nanometers, wherein the first-material phase and the second-material phase further are microphase-separated on a length scale from 0.1 microns to 100 microns. The larger length scale of separation is driven by an emulsion process, which provides microphase separation that is in addition to classic molecular-level phase separation. The composite material has a glass-transition temperature above −80° C. The coatings may be characterized by an AMIL Centrifuge Ice Adhesion Reduction Factor up to 100 or more. These coatings are useful for aerospace surfaces and many other applications.

Patent Agency Ranking