MULTIPHASE COATINGS WITH SEPARATED FUNCTIONAL PARTICLES, AND METHODS OF MAKING AND USING THE SAME

    公开(公告)号:US20190048223A1

    公开(公告)日:2019-02-14

    申请号:US15957638

    申请日:2018-04-19

    Abstract: Some variations provide a multiphase polymer composition comprising a first polymer material and a second polymer material that are chemically distinct, wherein the first polymer material and the second polymer material are microphase-separated on a microphase-separation length scale from about 0.1 microns to about 500 microns, wherein the multiphase polymer composition comprises first solid functional particles selectively dispersed within the first polymer material, and wherein the first solid functional particles are chemically distinct from the first polymer material and the second polymer material. Some embodiments provide an anti-corrosion composition comprising first corrosion-inhibitor particles or precursors selectively dispersed within the first polymer material, wherein the multiphase polymer composition optionally further comprises second corrosion-inhibitor particles or precursors selectively dispersed within the second polymer material. These multiphase polymer compositions may be used for other applications, such as self-cleaning, self-healing, or flame-retardant coatings. Methods of making and using these multiphase polymer compositions are disclosed.

    BROADBAND-TRANSPARENT POLYSULFIDE-BASED COPOLYMERS

    公开(公告)号:US20200291185A1

    公开(公告)日:2020-09-17

    申请号:US16717466

    申请日:2019-12-17

    Abstract: Some variations provide a polysulfide-based copolymer containing first repeat units comprising S8-derived sulfur atoms bonded via sulfur-sulfur bonds; and second repeat units comprising an organic, non-aromatic thiol molecule. Other variations provide a polysulfide-based copolymer containing first repeat units comprising S8-derived sulfur atoms bonded via sulfur-sulfur bonds; and second repeat units comprising an organic, non-aromatic unsaturated molecule, wherein the polysulfide-based copolymer has a total sulfur concentration of about 10 wt % or greater. Other variations provide a polysulfide-based copolymer containing first repeat units comprising S8-derived sulfur atoms bonded via sulfur-sulfur bonds; second repeat units comprising an organic, non-aromatic thiol molecule; and third repeat units comprising an organic, non-aromatic unsaturated molecule. Other variations provide a polysulfide-based copolymer containing first repeat units comprising S8-derived sulfur atoms bonded via sulfur-sulfur bonds; and second repeat units comprising an organic, non-aromatic thioether molecule. The disclosed polysulfide-based copolymers provide broadband transparency, fracture toughness, fluid resistance, and low cost.

    PRECERAMIC 3D-PRINTING MONOMER AND POLYMER FORMULATIONS

    公开(公告)号:US20200290931A1

    公开(公告)日:2020-09-17

    申请号:US16888724

    申请日:2020-05-30

    Abstract: This disclosure provides resin formulations which may be used for 3D printing and thermally treating to produce a ceramic material. The disclosure provides direct, free-form 3D printing of a preceramic polymer, followed by converting the preceramic polymer to a 3D-printed ceramic composite with potentially complex 3D shapes. A wide variety of chemical compositions is disclosed, and several experimental examples are included to demonstrate reduction to practice. For example, preceramic resin formulations may contain a carbosilane in which there is at least one functional group selected from vinyl, allyl, ethynyl, unsubstituted or substituted alkyl, ester group, amine, hydroxyl, vinyl ether, vinyl ester, glycidyl, glycidyl ether, vinyl glycidyl ether, vinyl amide, vinyl triazine, vinyl isocyanurate, acrylate, methacrylate, alkacrylate, alkyl alkacrylate, phenyl, halide, thiol, cyano, cyanate, or thiocyanate. The resin formulations may contain a solid-phase filler, to provide high thermal stability and mechanical strength (e.g., fracture toughness) in the final ceramic material.

    PRECERAMIC 3D-PRINTING MONOMER AND POLYMER FORMULATIONS

    公开(公告)号:US20240190775A1

    公开(公告)日:2024-06-13

    申请号:US18585284

    申请日:2024-02-23

    Abstract: This disclosure provides resin formulations which may be used for 3D printing and thermally treating to produce a ceramic material. The disclosure provides direct, free-form 3D printing of a preceramic polymer, followed by converting the preceramic polymer to a 3D-printed ceramic composite with potentially complex 3D shapes. A wide variety of chemical compositions is disclosed, and several experimental examples are included to demonstrate reduction to practice. For example, preceramic resin formulations may contain a carbosilane in which there is at least one functional group selected from vinyl, allyl, ethynyl, unsubstituted or substituted alkyl, ester group, amine, hydroxyl, vinyl ether, vinyl ester, glycidyl, glycidyl ether, vinyl glycidyl ether, vinyl amide, vinyl triazine, vinyl isocyanurate, acrylate, methacrylate, alkyl acrylate, alkyl methacrylate, phenyl, halide, thiol, cyano, cyanate, or thiocyanate. The resin formulations may contain a solid-phase filler, to provide high thermal stability and mechanical strength (e.g., fracture toughness) in the final ceramic material.

    PRECERAMIC 3D-PRINTING MONOMER AND POLYMER FORMULATIONS

    公开(公告)号:US20240124364A1

    公开(公告)日:2024-04-18

    申请号:US18393913

    申请日:2023-12-22

    Abstract: This disclosure provides resin formulations which may be used for 3D printing and thermally treating to produce a ceramic material. The disclosure provides direct, free-form 3D printing of a preceramic polymer, followed by converting the preceramic polymer to a 3D-printed ceramic composite with potentially complex 3D shapes. A wide variety of chemical compositions is disclosed, and several experimental examples are included to demonstrate reduction to practice. For example, preceramic resin formulations may contain a carbosilane in which there is at least one functional group selected from vinyl, allyl, ethynyl, unsubstituted or substituted alkyl, ester group, amine, hydroxyl, vinyl ether, vinyl ester, glycidyl, glycidyl ether, vinyl glycidyl ether, vinyl amide, vinyl triazine, vinyl isocyanurate, acrylate, methacrylate, alkacrylate, alkyl alkacrylate, phenyl, halide, thiol, cyano, cyanate, or thiocyanate. The resin formulations may contain a solid-phase filler, to provide high thermal stability and mechanical strength (e.g., fracture toughness) in the final ceramic material.

    MULTIPHASE COATINGS WITH SEPARATED FUNCTIONAL PARTICLES, AND METHODS OF MAKING AND USING THE SAME

    公开(公告)号:US20220119673A1

    公开(公告)日:2022-04-21

    申请号:US17564903

    申请日:2021-12-29

    Abstract: Some variations provide a multiphase polymer composition comprising a first polymer material and a second polymer material that are chemically distinct, wherein the first polymer material and the second polymer material are microphase-separated on a microphase-separation length scale from about 0.1 microns to about 500 microns, wherein the multiphase polymer composition comprises first solid functional particles selectively dispersed within the first polymer material, and wherein the first solid functional particles are chemically distinct from the first polymer material and the second polymer material. Some embodiments provide an anti-corrosion composition comprising first corrosion-inhibitor particles or precursors selectively dispersed within the first polymer material, wherein the multiphase polymer composition optionally further comprises second corrosion-inhibitor particles or precursors selectively dispersed within the second polymer material. These multiphase polymer compositions may be used for other applications, such as self-cleaning, self-healing, or flame-retardant coatings. Methods of making and using these multiphase polymer compositions are disclosed.

    MULTIPHASE COATINGS WITH SEPARATED FUNCTIONAL PARTICLES, AND METHODS OF MAKING AND USING THE SAME

    公开(公告)号:US20200277510A1

    公开(公告)日:2020-09-03

    申请号:US16876075

    申请日:2020-05-17

    Abstract: Some variations provide a multiphase polymer composition comprising a first polymer material and a second polymer material that are chemically distinct, wherein the first polymer material and the second polymer material are microphase-separated on a microphase-separation length scale from about 0.1 microns to about 500 microns, wherein the multiphase polymer composition comprises first solid functional particles selectively dispersed within the first polymer material, and wherein the first solid functional particles are chemically distinct from the first polymer material and the second polymer material. Some embodiments provide an anti-corrosion composition comprising first corrosion-inhibitor particles or precursors selectively dispersed within the first polymer material, wherein the multiphase polymer composition optionally further comprises second corrosion-inhibitor particles or precursors selectively dispersed within the second polymer material. These multiphase polymer compositions may be used for other applications, such as self-cleaning, self-healing, or flame-retardant coatings. Methods of making and using these multiphase polymer compositions are disclosed.

Patent Agency Ranking