Abstract:
[Problem] Biphasic self-setting calcium phosphate (SSCP) used for bone graft material and dental material applications having shape formability, shape retentivity, and bone replacement properties in addition to biocompatibility, safety, non-infectiousness, and absence of outflow, wherein the work time for forming the shape of a kneaded material obtained by kneading biphasic SSCP powder and biphasic SSCP liquid is controlled.[Solution] A method for controlling the work time for forming the shape of biphasic SSCP in which the moldable work time from the start of kneading to the setting of the kneaded material is adjusted to within a range of from 10 seconds to 600 seconds by kneading a biphasic SSCP powder and biphasic SSCP liquid, the biphasic SSCP powder comprising tetracalcium phosphate and α-tricalcium phosphate and the biphasic SSCP liquid comprising a phosphoric acid aqueous solution containing a calcium component.
Abstract:
This study reports in vitro and in vivo properties of fluorapatite (FA)-forming calcium phosphate cements (CPCs). Experimental cements contained from (0 to 3.1) mass % of F, corresponding to presence of FA at levels of approximately (0 to 87) mass %. The crystallinity of the apatitic cement product increased greatly with the FA content. When implanted subcutaneously in rats, the in vivo resorption rate decreased significantly with increasing FA content. The cement with the highest FA content was not resorbed in soft tissue, making it biocompatible and bioinert CPC. These bioinert CPCs are candidates for use in useful applications where slow or no resorption of the implant is required to achieve the desired clinical outcome.
Abstract:
This invention relates to a cement, which comprises in its main phase of microcrystalline magnesium ammonium phosphate and nanoapatite after hardening and thus at the same time has considerable strength. The material is biologically degradable and is suitable for application in tooth cements, as bone replacement, as bone filler, as bone cement or as bone adhesive.
Abstract:
Inorganic resin compositions comprising, in combination, an aqueous solution of metal phosphate, an oxy-boron compound, a wollastonite compound and other optional additives, inorganic composite articles and products reinforced by fillers and fibers including glass fibers obtained from these compositions and processes for preparing said products.
Abstract:
This invention relates to a cement, which consists in its main phase of microcrystalline magnesium ammonium phosphate and nanoapatite after hardening and thus at the same time has considerable strength. The material is biologically degradable and is suitable for application in tooth cements, as bone replacement, as bone filler, as bone cement or as bone adhesive.
Abstract:
Phosphomagnesia compositions settable into improvedly water-insensitive cements that retain their mechanical properties comprise an intimate admixture of (i) a binder phase including (a) at least one phosphorous compound (P.sub.2 O.sub.5 or derivative/precursor thereof) and (b) at least one magnesium compound reactive therewith in the presence of water, (ii) an effective amount of cementitious aggregate, and (iii) a water sensitivity-reducing amount of at least one silicone homogeneously distributed therethrough.
Abstract translation:可凝固成改进的不敏感水泥的磷酸盐组合物,其保持其机械性能包括(i)粘合剂相的紧密混合物,其包含(a)至少一种磷化合物(P 2 O 5或其衍生物/前体)和(b)至少一种镁 在水的存在下与其反应的化合物,(ii)有效量的水泥骨料,和(iii)至少一种均匀分布在其中的硅氧烷的水敏感性降低量。
Abstract:
This invention relates to a cement, which comprises in its main phase of microcrystalline magnesium ammonium phosphate and nanoapatite after hardening and thus at the same time has considerable strength. The material is biologically degradable and is suitable for application in tooth cements, as bone replacement, as bone filler, as bone cement or as bone adhesive.
Abstract:
A highly protective firewall (13) supported between upstanding columns or beams (15). The firewall is made of an inorganic cementitious material which is preferably inorganic phosphate cement. In one form, the firewall comprises a group of vertically stacked panels (14) made of such material, and the panels are in turn formed by a plurality of elongated and vertically stacked hollow members (21) of the same material.
Abstract:
This invention relates to a cement, which comprises in its main phase of microcrystalline magnesium ammonium phosphate and nanoapatite after hardening and thus at the same time has considerable strength. The material is biologically degradable and is suitable for application in tooth cements, as bone replacement, as bone filler, as bone cement or as bone adhesive.
Abstract:
The present invention relates to a method for the fabrication of a dental cast part having the following steps: a.) Forming and hardening a first working model of a dentition, in such a way that the material used for fabrication of the working model expands during hardening, b.) Modelling a restoration from a modelling material on the first working model or a second working model that is essentially identical to the first working model in respect of its dimensions, c.) Embedding the restoration model in a settable dental investment that is at least essentially quartz-free, d.) Hardening the dental investment e.) Removing the restoration model from the dental investment so that a casting form is created, f.) Introducing liquid metal into the casting form and allowing the metal to solidify in the casting form. g.) Removal of the metal that has solidified to form a dental cast part.