Abstract:
A micromechanical structure has a first micromechanical element, a second micromechanical element and a torsion spring arrangement having a first torsion spring element, having a first center line, mechanically connected to the first micromechanical element at a first contact region and to the second micromechanical element at a second contact region, and having a second torsion spring element, having a second center line, mechanically connected to the first micromechanical member at a third contact region and to the second micromechanical member at a fourth contact region in order to connect the first micromechanical member and the second micromechanical member to be movable relative to each other. A distance between the first and second center lines, starting from the first and third contact regions toward the second and fourth contact regions, decreases in a first portion and increases in a second portion. In a rest position of the micromechanical structure, the first and second torsion spring elements are arranged without contact to each other.
Abstract:
The invention relates to a microelectromechanical system (10) comprising a drive module (200) comprising:
a fixed drive portion (210), a movable drive portion (220), and a suspension (230),
the movable drive portion (220) being able to be moved relative to the fixed drive portion (210) in a first direction (A), as a result of an electrostatic force, which causes an elastic deformation of the suspension (230), and the movable drive portion (220) being able to be moved relative to the fixed drive portion (210) in a second direction (B), opposite to the first direction (A), as a result of an elastic return force generated by the suspension (230),
the actuator (11) also comprising a stop (24) limiting the movement of the first movable portion (220) in the second direction (B) so that the elastic force generated by the suspension (230) is not cancelled.
Abstract:
The invention relates to a one-piece metal component including an electroformed metal body, the external surface of the body including, only over or to a predetermined depth, less trapped hydrogen than the rest of the electroformed metal body causing a hardening relative to the rest of the body in order to improve the wear resistance of the one-piece component while preserving a relative magnetic permeability of less than 10 and the ability to be driven or pressed fit.
Abstract:
A functional micromechanical timepiece assembly including at least a first component, including a first layer defining a first contact surface configured to come into friction contact with a second contact surface defined by a second layer, the second layer belonging, either to the first component, or to at least a second micromechanical component forming the assembly with the first component. The first and second layers each include carbon with at least 50% carbon atoms and, on the first and second contact surfaces, the layers have different surface crystalline plane orientations from each other.
Abstract:
A method of manufacturing a timepiece component, such as a balance, an oscillating mass or a wheel, comprises a micro-manufacturing technique, such as the DRIE technique. The method may comprise forming at least one member in or at the periphery of the structure, of a material different from that of the structure. This member is typically metal and is formed by electro-forming using a cavity of the structure as a mold.
Abstract:
The invention relates to a timepiece component, such as a balance (1), an oscillating mass (12) or a wheel (20), that comprises a structure (2) made according to a micro-manufacturing technique, such as the DRIE technique. The component is characterised in that it further comprises at least one member (3) formed in or at the periphery of the structure (2) and made of a material different from that of the structure (2). This member (3) is typically metal and is formed by electro-forming using a cavity (7) of the structure (2) as a mould.
Abstract:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
Abstract:
To produce a micro component, a resin base (1) capable of being dissolved by a solvent is formed, physical external force is allowed to act on the resin base (1) to form a concave (3) and after a metal is filled into the concave (3), an excessive metal is removed by grinding and the resin base (1) is dissolved by the solvent. Consequently, the necessity for lithography apparatuses such as a stepper and an etching apparatus can be eliminated, economy can be improved and production of components having complicated shapes that the lithographic technology cannot easily produce can also be produced.
Abstract:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
Abstract:
A high temperature resist process is combined with microlithographic patterning for the production of materials, such as diamond films, that require a high temperature deposition environment. A conventional polymeric resist process may be used to deposit a pattern of high temperature resist material. With the high temperature resist in place and the polymeric resist removed, a high temperature deposition process may proceed without degradation of the resist pattern. After a desired film of material has been deposited, the high temperature resist is removed to leave the film in the pattern defined by the resist. For diamond films, a high temperature silicon nitride resist can be used for microlithographic patterning of a silicon substrate to provide a uniform distribution of diamond nucleation sites and to improve diamond film adhesion to the substrate. A fine-grained nucleation geometry, established at the nucleation sites, is maintained as the diamond film is deposited over the entire substrate after the silicon nitride resist is removed. The process can be extended to form microstructures of fine-grained polycrystalline diamond, such as rotatable microgears and surface relief patterns, that have the desirable characteristics of hardness, wear resistance, thermal conductivity, chemical inertness, anti-reflectance, and a low coefficient of friction.