Abstract:
The present invention is a method for fabricating shaped monolithic ceramics and ceramic composites, and the ceramics and composites made thereby. The method of the present invention includes three basic steps: (1) Synthesis or other acquisition of a porous preform with an appropriate composition, pore fraction, and overall shape is prepared or obtained. The pore fraction of the preform is tailored so that the reaction-induced increase in solid volume can compensate partially or completely for such porosity. It will be understood that the porous preform need only be sufficiently dimensionally stable to resist the capillary action of the infiltrated liquid reactant; (2) Infiltration: The porous preform is infiltrated with a liquid reactant; and (3) Reaction: The liquid reactant is allowed to react partially or completely with the solid preform to produce a dense, shaped body containing desired ceramic phase(s). The reaction in step (3) above is a displacement reaction of the following general type between a liquid species, M(l), and a solid preform comprising the compound, NBXC(s): AM(l)nullNBXC(s)nullAMXC/A(s)nullBN(l/g) where MXC/A(s) is a solid reaction product (X is a metalloid element, such as, for example, oxygen, nitrogen, sulfur, etc.) and N(l/g) is a fluid (liquid or gas) reaction product. A, B and C are molar coefficients.
Abstract:
The purpose of the present invention is to describe a novel approach for converting 3-dimensional, synthetic micro- and nano-templates into different materials with a retention of shape/dimensions and morphological features. The ultimate objective of this approach is to mass-produce micro- and nano-templates of tailored shapes through the use of synthetic or man-made micropreforms, and then chemical conversion of such templates by controlled chemical reactions into near net-shaped, micro- and nano-components of desired compositions. The basic idea of this invention is to obtain a synthetic microtemplate with a desired shape and with desired surface features, and then to convert the microtemplate into a different material through the use of chemical reactions.
Abstract:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
Abstract:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).