Abstract:
A functional micromechanical timepiece assembly including at least a first component, including a first layer defining a first contact surface configured to come into friction contact with a second contact surface defined by a second layer, the second layer belonging, either to the first component, or to at least a second micromechanical component forming the assembly with the first component. The first and second layers each include carbon with at least 50% carbon atoms and, on the first and second contact surfaces, the layers have different surface crystalline plane orientations from each other.
Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate (4) component to be coated; providing said component with a first diamond coating (2) doped with boron; providing said component with a second diamond coating (3); wherein: said second diamond coating (3) is provided by CVD in a reaction chamber; during CVD deposition, during the last portion of the growth process, a controlled increase of the carbon content within the reaction chamber is provided, thereby providing an increase of the sp2/sp3 carbon (6) bonds up to an sp2 content substantially between 1% and 45%. Corresponding micromechanical components are also provided.
Abstract:
A functional micromechanical timepiece assembly including at least a first component, including a first layer defining a first contact surface configured to come into friction contact with a second contact surface defined by a second layer, the second layer belonging, either to the first component, or to at least a second micromechanical component forming the assembly with the first component. The first and second layers each include carbon with at least 50% carbon atoms and, on the first and second contact surfaces, the layers have different surface crystalline plane orientations from each other.
Abstract:
The present invention relates to a compositions for and methods of cancer treatment in which compounds of Formula I or Formula II. In some aspects, the treatment of B-cell Lymphoma or other hematopoietic cancers is encompassed. In other aspects, the invention provides methods for treating particular types of hematopoietic cancers, such as B-cell lymphoma, using a combination of one or more compounds of Formula I or Formula II. Combination therapy with, for example, a class of therapeutics known as 26S proteasome inhibitors, for example, Bortezomib, are also included. In another aspect the present invention relates to autoimmune treatment with compounds of Formula I or Formula II. In another aspect, this invention relates to methods for identifying compounds, for example, compounds of the BH3 mimic class, that have unique in vitro properties that predict in vivo efficacy against B-cell lymphoma tumors and other cancers as well as autoimmune disease.
Abstract:
A method for manufacturing a component in a substrate including: a) modifying a structure of at least one region of the substrate to make the at least one region more selective; and b) chemically etching the at least one region to selectively manufacture the component.
Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate component to be coated; providing said component with a diamond coating; wherein diamond coating is provide by CVD in a reaction chamber and during CVD deposition, during the last portion of the growth process, a controlled change of the carbon content within the reaction chamber is provided, thereby providing a change of the sp2/sp3 carbon bonds in the vicinity of the surface. Corresponding micromechanical components are also provided.
Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate component to be coated; providing said component with a diamond coating; wherein diamond coating is provide by CVD in a reaction chamber and during CVD deposition, during the last portion of the growth process, a controlled change of the carbon content within the reaction chamber is provided, thereby providing a change of the sp2/sp3 carbon bonds in the vicinity of the surface. Corresponding micromechanical components are also provided.
Abstract:
An apparatus and method for handling pipes in a derrick and racking the pipes on a pipe racking assembly mounted on the derrick. The apparatus includes a rotatable gate assembly rotatably mounted on the pipe racking assembly. The rotatable gate assembly includes a collar rotatably mounted to a first end of a rotatable pipe support. A pipe manipulator arm is pivotably mounted on a second end of the rotatable gate assembly. The collar defines a gate for securing an upper portion of the pipe stand. A pipe mount is mounted to a distal end of the arm for holding the pipe stand for transport between the derrick and the gate, and between the gate and the pipe rack. After the arm secures the pipe stand into the gate from the derrick, a drive mechanism rotates the rotatable gate assembly to a rack facing position from the derrick facing position such that the arm may transport the pipe between the gate and the pipe rack.
Abstract:
A polymer-based component formed from a synthetic thermoplastic or thermoset resin substrate, such as polymethyl methacrylate, which is resistant to warping and distortion from moisture. A composite multi-layer surface-hardening coating is formed on at least the anterior surface of the resin substrate. The component can include a composite multi-layer reflective coating to form a mirror. A protective back-coat layer is deposited on a posterior surface of the mirror. A multi-layer weather-resistant coating may optionally be applied to the anterior surface of the polymer-based mirror in order to increase the weatherability and durability of the mirror. The various layers coating the synthetic resin substrate have their moisture permeabilities selected so that substantially equal amounts of moisture permeate through to both the anterior and posterior side of the synthetic resin substrate. A sol-gel coating can be used to deposit the multi-layers in a single step by providing gradient zones of zirconia/silica while enabling a hydrophobic or a hydrophilic exterior surface.
Abstract:
Systems and methods are provided to allocate application tasks to a pool of processing machines. According to some embodiments, a requestor generates a scope request including an indication of a number of compute units to be reserved. The requestor also provides an application request associated with the scope. A subset of available processing machines may then be allocated to the scope, and the application request is divided into a number of different tasks. Each task may then be assigned to a processing machine that has been allocated to the application request. According to some embodiments, each task is associated with a deadline. Moreover, according to some embodiments an overall cost is determined and then allocated to the requestor based on the number of compute units that were reserved for the scope.