Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate component to be coated; providing said component with a diamond coating; wherein diamond coating is provide by CVD in a reaction chamber and during CVD deposition, during the last portion of the growth process, a controlled change of the carbon content within the reaction chamber is provided, thereby providing a change of the sp2/sp3 carbon bonds in the vicinity of the surface. Corresponding micromechanical components are also provided.
Abstract:
A base body contains a substrate that is at least partially coated with a carbon-containing layer. The carbon-containing layer is at least partially functionalized with a molecule that is bound directly or via at least one linker or functional group to the carbon-containing layer. The base body, which has a functionalized carbon-containing surface, is capable of influencing biological processes during a corresponding functionalization.
Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate component to be coated; providing said component with a diamond coating; wherein diamond coating is provide by CVD in a reaction chamber and during CVD deposition, during the last portion of the growth process, a controlled change of the carbon content within the reaction chamber is provided, thereby providing a change of the sp2/sp3 carbon bonds in the vicinity of the surface. Corresponding micromechanical components are also provided.
Abstract:
The invention relates to a target for a laser desorption/ionisation mass spectrometer, comprising a substrate that is at least partially coated with a carbon-containing layer comprising a material selected from the group consisting of diamond, amorphous carbon, DLC (diamond-like carbon), graphite, nanotubes, nanowires, fullerenes and mixtures thereof.