Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate (4) component to be coated; providing said component with a first diamond coating (2) doped with boron; providing said component with a second diamond coating (3); wherein: said second diamond coating (3) is provided by CVD in a reaction chamber; during CVD deposition, during the last portion of the growth process, a controlled increase of the carbon content within the reaction chamber is provided, thereby providing an increase of the sp2/sp3 carbon (6) bonds up to an sp2 content substantially between 1% and 45%. Corresponding micromechanical components are also provided.
Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate component to be coated; providing said component with a diamond coating; wherein said diamond coating conductivity is increased in order to reduce dust attraction by the coated component when used in said micromechanical system. Corresponding micromechanical components and systems are also provided.
Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate component to be coated; providing said component with a diamond coating; wherein diamond coating is provide by CVD in a reaction chamber and during CVD deposition, during the last portion of the growth process, a controlled change of the carbon content within the reaction chamber is provided, thereby providing a change of the sp2/sp3 carbon bonds in the vicinity of the surface. Corresponding micromechanical components are also provided.
Abstract:
Method for coating micromechanical components of a micromechanical system, in particular a watch movement, comprising: providing a substrate component to be coated; providing said component with a diamond coating; wherein diamond coating is provide by CVD in a reaction chamber and during CVD deposition, during the last portion of the growth process, a controlled change of the carbon content within the reaction chamber is provided, thereby providing a change of the sp2/sp3 carbon bonds in the vicinity of the surface. Corresponding micromechanical components are also provided.