Abstract:
Numerous embodiments are disclosed. In one, a laser-processing apparatus includes a workpiece handling system having an unwind assembly including an unwind spindle operative to support an unwind material roll of a workpiece, and a rewind assembly including a rewind spindle operative to support a rewind material roll of the workpiece and receive the workpiece from the laser-processing apparatus. In another, a laser-processing apparatus includes a workpiece handling system having a web handling assembly attached to an upper structure configured to support an unwind spindle supporting a unwind material roll of a workpiece, wherein the web handling assembly is positioned within a space above the fixture. The laser-processing apparatus further includes a web tensioner assembly configured to apply a biasing force on the tensioning roller to maintain the workpiece in a desired state of tension.
Abstract:
Laser control systems and related methods for controlling arrays of lasers are disclosed. A laser control system may include a first controller configured to generate a trigger signal based on a position of a laser array, and a second controller configured to send a firing signal to one or more lasers of the laser array upon receiving the trigger signal. The one or more lasers may be selected based on a desired pattern of laser energy to be formed at a particular position of the laser array.
Abstract:
In one aspect, the present invention relates to a computing unit (RE) for executing a conversion algorithm, having an interface (UI) for acquiring a first cutting parameter data set (1SP); and having a processor (P) which is designed to extract a movement profile object (bpo) and which is also designed to execute a conversion algorithm that is stored in a memory of the electronic computing unit (RE) so that it can be loaded and/or executed to calculate and provide the second cutting parameter data set (2SP) to the acquired first cutting parameter data set (1SP), wherein the second cutting parameter data set (2SP) is calculated as a function of the extracted movement profile object (bpo).
Abstract:
Detectors are situated along a tilted optical axis to receive optical radiation from a work surface. Variations in the received optical power are used to estimate a work surface positional along a work surface axis. The received optical power can be emitted from the work surface and an estimated temperature of the work surface used to adjust the received optical power. One or two single element detectors or a linear detector can be used. A position of a focused spot produced from the received optical power at the linear detector can be used to assess work surface axial position.
Abstract:
Techniques are disclosed for an improved boresighting apparatus and related method for boresighting a light source to an imaging sensor, and for an improved material to be used in a target object in such a boresighting apparatus. For example, an apparatus for use in boresighting may include a catadioptric element and a target object, where the catadioptric element is configured to focus a laser beam from the light source and also to collimate light emitted from the target object at a different wavelength than the laser beam to be detected by the imaging sensor for indicating the location of the focused laser beam. The target object may, for example, comprises a fluorescent optical material doped with one or more optically active ions to absorb light having the wavelength of the laser beam and emit light in one or more wavebands detectable by the imaging sensors.
Abstract:
A method for treating a material comprising: applying energy to a predetermined portion of the material in a controlled manner such that the local chemistry of the predetermined portion is altered to provide a predetermined result. When the material is a shape memory material, the predetermined result may be to provide an additional memory to the predetermined portion or to alter the pseudo-elastic properties of the shape memory material. In other examples, which are not necessarily restricted to shape memory materials, the process may be used to adjust the concentration of components at the surface to allow the formation of an oxide layer at the surface of the material to provide corrosion resistance; to remove contaminants from the material; to adjust surface texture; or to generate at least one additional phase particle in the material to provide a nucleation site for grain growth, which in turn, can strengthen the material.
Abstract:
The present disclosure provides various apparatuses, systems, software, and methods for three-dimensional (3D) printing. The disclosure delineates various optical components of the 3D printing system, their usage, and their optional calibration. The disclosure delineates calibration of one or more components of the 3D printer (e.g., the energy beam).
Abstract:
To provide a clean bench that can prevent failure of optical components due to intrusion of dust and moisture, and enables to perform maintenance replacement of the optical unit, verification processes after replacement, etc. favorably, and a laser fiber oscillator mounting the same. A laser fiber oscillator includes a housing that accommodates an optical unit to be able to be drawn out; and a clean bench that is detachable to a side of the optical unit, and forms a closed space which is isolated from outside, above the optical unit that has been drawn out from the housing, in which a communication opening that is in communication with an internal space of the housing is formed in the clean bench.
Abstract:
Provided are a processing device and a processing method with which the device can be made more compact, and with which highly precise processing can be performed. The processing device, which processes a member to be processed by irradiating the member to be processed with a laser, has: a laser oscillator having a plurality of vertical cavity surface-emitting laser diode chips that output laser light having a wavelength of 1,070 nm or less, and a substrate on the surface of which the plurality of vertical cavity surface-emitting laser diode chips are arranged in a matrix; a guidance optical system that guides the laser light output from the laser oscillator; and a control device that controls the output of the laser oscillator.
Abstract:
A laser processing system capable of appropriately adjusting a timing to switch a laser output command with respect to the movement of an axis, and improving synchronization accuracy between the movement of the axis and a cutting position. A block remaining time of a block in execution is compared to a predetermined switching time. When the block remaining time is equal to or larger than the switching time, a laser output command of the current block is continued. On the other hand, when the block remaining time is smaller than the switching time, the laser output command to a laser oscillator is switched from the command of the current block to a command of a block subsequent to the current block.