Abstract:
This invention relates to a method for manufacturing a metal part which comprises attaching a powder forged or wrought outer raced ID splined plate to a powdered metal inner splined connection gear, wherein the outer raced ID splined plate incorporates a female ID profile on the race, wherein the inner splined connection gear contains a mail OD profile on the exterior of the part, and wherein the splined plate and the splined connection gear are attached together by (1) sinter brazing, (2) laser brazing, (3) laser welding, (4) sintering a mechanical joint, or (5) staking. In practicing this method a tight mechanical joint is formed between the splined plate and the splined connection gear which can be made of highly dissimilar materials, such as a wrought metal and a sintered powder metal.
Abstract:
A method and an apparatus for collecting a powdered material after a print job in powder bed fusion additive manufacturing may involve a build platform supporting a powder bed capable of tilting, inverting, and shaking to separate the powder bed substantially from the build platform in a hopper. The powdered material may be collected in a hopper for reuse in later print jobs. The powder collecting process may be automated to increase efficiency of powder bed fusion additive manufacturing.
Abstract:
A gear for a torque transmission device includes a gear member and a support member with a weld formed therebetween, and the gear member has a first surface and a second surface. The first surface has teeth. The support member has a support surface. The weld attaches the second surface of the gear member and the support surface. Portions of the second surface of the gear member and the support surface which contact the weld are ungrooved.
Abstract:
A weld structure includes a fitting portion at which a first member and a second member are engaged, a weld portion at which the first member and the second member are welded together, and a space between the fitting portion and the weld portion. One of the first member and the second member has a communication passage whose one end is open to the space and whose other end is open to an outside at a position other than the space. The communication passage is blocked by an insertion member that has a predetermined function in addition to blocking the communication passage.
Abstract:
A method for manufacturing a ring gear/differential case assembly includes attaching a ring gear to a differential case. The ring gear and the differential case are fabricated of materials having differing properties. The attaching includes placing a first portion of the ring gear in intimate contact with a first portion of the differential case whereby a predetermined gap is defined between another portion of the ring gear and another portion of the differential case. The ring gear first portion is attached to the differential case first portion by a friction welding process. The predetermined gap defines an outflow channel for receiving an overflow material created by an upset forging step of the friction welding process. Differential assemblies and vehicles including such are described.
Abstract:
A rack manufacturing apparatus and a rack manufacturing method are provided. The rack manufacturing apparatus includes a first support portion configured to support a hollow or solid first bar on which first rack teeth are formed, a second support portion configured to support a hollow or solid second bar such that an axial center line of the second bar is aligned with an axial center line of the first bar, a base configured to cause the second support portion to approach the first support portion, and a rotary driving portion configured to rotate the second support portion about the axial center line of the second support portion relative to the first support portion so as to join an end portion of the first bar and an end portion of the second bar by a friction pressure welding.
Abstract:
A weld includes a first component and a second component. The first component includes a fay surface with one or more grooves. The second component includes a surface that is configured to mate with the fay surface of the first component. The fay surface of the first component and the surface of the second component form a friction weld when the two surfaces are mated together and relative motion between the first component and the second component generates heat through mechanical friction between the two components.
Abstract:
A welded structure and welding method make it possible to improve welding strength and welding quality. A welded structure in which a first member and a second member are joined by welding, wherein the first member comprises a second-member joining part which is joined to the second member, and the second member comprises a first-member joining part which is joined to the first member. If the direction in which the first member and the second member are arranged is the first direction, and the direction intersecting the first direction is the second direction, the welded structure comprises a cavity part which is provided between the first-member joining part and the second-member joining part, and a welded part which is provided between the cavity part and both end parts in the second direction of the joining surface where the first-member joining part and the second-member joining part are joined.
Abstract:
A method for manufacturing a vehicle power transmission device having a case and a ring gear fitted to the outer peripheral surface of the case to transmit drive power from a drive source. The method includes: a welding step in which an annular flange is provided on the case or the ring gear and butt welding is performed by lapping a weld bead along the contact portion of one side surface of the annular flange and the case or the ring gear; a measurement step in which the outline of the other side surface of the annular flange placed in close proximity to the one side surface are measured; and an evaluation step in which a weld condition is evaluated based on part of the outline, which is determined in the measurement step, of a portion corresponding to the lapping portion of the weld bead.
Abstract:
Disclosed are a welded structure and a welding method which make it possible to improve welding strength and welding quality. A welded structure in which a first member and a second member are joined by means of welding, wherein the first member comprises a second-member joining part which is joined to the second member, and the second member comprises a first-member joining part which is joined to the first member. If the direction in which the first member and the second member are arranged is the first direction, and the direction intersecting the first direction is the second direction, the welded structure comprises a cavity part which is provided between the first-member joining part and the second-member joining part, and a welded part which is provided between the cavity part and both end parts in the second direction of the joining surface where the first-member joining part and the second-member joining part are joined.