Abstract:
Soft-matter technologies are essential for emerging applications in wearable computing, human-machine interaction, and soft robotics. However, as these technologies gain adoption in society and interact with unstructured environments, material and structure damage becomes inevitable. A robotic material that mimics soft tissues found in biological systems may be used to identify, compute, and respond to damage. This material includes liquid metal droplets dispersed in soft elastomers that rupture when damaged to create electrically conductive pathways that are identified with a soft active-matrix grid. These technologies may be used to autonomously identify damage, calculate severity, and respond to prevent failure within robotic systems.
Abstract:
A coating and developing method includes: a step that applies a resist containing a metal to a front surface of a substrate to form a resist film, and exposes the resist film; a developing step that supplies a developer to the front surface of the substrate to develop the resist film; and a step that forms, before the developing step, a first protective film on a peripheral part of the substrate on which the resist film is not formed, so as to prevent the developer from coming into contact with the peripheral part of the substrate, wherein the first protective film is formed at least on a peripheral end surface and a peripheral portion of a rear surface of the substrate in the peripheral part of the substrate.
Abstract:
A method for the micro-structured application of a fluid or paste onto a surface, including providing a substrate having a surface, coating the surface with a non-stick layer, at least partially removing the non-stick layer and producing a coating area, and applying at least one fluid droplet or paste droplet onto the surface in the coating area.
Abstract:
Electronic devices may have housings in which components are mounted. Some of the components may be sensitive to moisture. Other components may be insensitive to moisture and may form openings in a device housing that allow moisture to escape from within the housing. Components may be mounted on substrates such as printed circuit board substrates. Moisture repelling layers and moisture attracting layers may be patterned to form channels and other structures that guide moisture away from sensitive components towards insensitive components. Moisture repelling and attracting layers may also be used to limit the lateral spread of a conformal coating layer when coating components.
Abstract:
An apparatus for masking an article with masking material is disclosed. The apparatus generally includes a spray head connected to a primary channel which forms a passage for the masking material. This channel has two sections, the first of which terminates in a junction with the spray head and is angled from the second section. In addition, the apparatus has at least one secondary channel which forms an air passage and is attached to the primary angled channel.
Abstract:
A method for forming a pattern includes steps of forming a patterned core layer on a substrate, conformally forming a spacer layer on the patterned core layer to form first concave portions, performing an etch back process to expose the patterned core layer, removing the exposed patterned core layer to form second concave portions, filling up the first concave portions and the second concave portions with a directed self-assembly material, and activating a directed self-assembly process, so that the directed self-assembly material is diffused to the perimeter of the concave portions to form a hole surrounding by the directed self-assembly material in each concave portions.
Abstract:
A method for masking a predetermined surface section prior to application of spray foam material and a masking tool are provided. An end portion of the masking tool is rubbed over the predetermined surface section such that a thin layer of the paraffin wax material is deposited thereon. The masking tool comprises a body made of a solid paraffin wax material. The body has a predetermined shape for holding the same while rubbing an end portion of the masking tool over the predetermined surface section. The paraffin wax material has a predetermined consistency such that during rubbing a thin layer of the paraffin wax material adheres to the predetermined surface section.
Abstract:
A method of applying a patterned coating of a silicone adhesive to a substrate sheet, comprising the steps of pattern coating a silicone precursor composition onto the substrate, followed by thermally curing the precursor composition coated on the substrate. The precursor composition is a viscous fluid, and the pattern coating is performed by suitably modified block printing, intaglio printing or screen printing methods. Also provided are coated substrates obtainable by the methods of the invention, and wound dressings comprising such coated substrates.
Abstract:
Turbine component coating processes include applying a malleable masking material to one or more apertures of one or more fluid flow passages within a turbine component surface and then applying a first coating over the malleable masking material and on the turbine component surface. The turbine component coating processes further include locally applying a local masking material to the one or more apertures of the one or more fluid flow passages and then applying a second coating over the local masking material and on the first coating.
Abstract:
The present invention relates to highly ordered arrays of nanoholes in metallic films and to an improved method for producing the same. The method according to the invention for producing an highly ordered array of nanoholes in metallic films on a substrate comprises the following steps: a) providing microspheres comprising poly-N-isopropylamide (polyNIPAM), the microspheres being selected from pure poly-N-isopropyl-amide (polyNIPAM) hydrogel microspheres and polymeric or inorganic beads carrying poly-N-isopropylamide (polyNIPAM) hydrogel chains, b) coating an aqueous dispersion of said microspheres onto a substrate and drying the dispersion, which results in a non-close packed ordered array of the microspheres, c) generating a metallic film on the substrate, d) removing the microspheres from the surface of the substrate which results in an ordered array of nanoholes on the substrate, and e) optionally increasing the thickness of the metallic film by selective electroless plating.